Senescent endothelial cells: a potential target for diabetic retinopathy

Bourne RRA, Jonas JB, Bron AM et al (2018) Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe in 2015: magnitude, temporal trends and projections. Br J Ophthalmol 102:575–585. https://doi.org/10.1136/bjophthalmol-2017-311258

Article  PubMed  Google Scholar 

Gui F, You Z, Fu S et al (2020) Endothelial dysfunction in Diabetic Retinopathy. Front Endocrinol (Lausanne) 11:591. https://doi.org/10.3389/fendo.2020.00591

Article  PubMed  Google Scholar 

Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366:1227–1239. https://doi.org/10.1056/NEJMra1005073

Article  PubMed  CAS  Google Scholar 

Antonetti DA, Silva PS, Stitt AW (2021) Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol 17:195–206. https://doi.org/10.1038/s41574-020-00451-4

Article  PubMed  PubMed Central  Google Scholar 

Oubaha M, Miloudi K, Dejda A et al (2016) Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy. Sci Transl Med 8:362ra144. https://doi.org/10.1126/scitranslmed.aaf9440

Crespo-Garcia S, Tsuruda PR, Dejda A et al (2021) Pathological angiogenesis in retinopathy engages cellular senescence and is amenable to therapeutic elimination via BCL-xL inhibition. Cell Metab 33:818–832e7. https://doi.org/10.1016/j.cmet.2021.01.011

Article  PubMed  CAS  Google Scholar 

Solomon SD, Chew E, Duh EJ et al (2017) Diabetic Retinopathy: A position Statement by the American Diabetes Association. Diabetes Care 40:412–418. https://doi.org/10.2337/dc16-2641

Article  PubMed  PubMed Central  Google Scholar 

Tang L, Zhang C, Yang Q et al (2021) Melatonin maintains inner blood-retinal barrier via inhibition of p38/TXNIP/NF-κB pathway in diabetic retinopathy. J Cell Physiol 236:5848–5864. https://doi.org/10.1002/jcp.30269

Article  PubMed  CAS  Google Scholar 

Wang J, Xu X, Elliott MH et al (2010) Müller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage. Diabetes 59:2297–2305. https://doi.org/10.2337/db09-1420

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang J-C, Li G-Y, Wang B et al (2019) Metformin inhibits metastatic breast cancer progression and improves chemosensitivity by inducing vessel normalization via PDGF-B downregulation. J Exp Clin Cancer Res 38:235. https://doi.org/10.1186/s13046-019-1211-2

Article  PubMed  PubMed Central  CAS  Google Scholar 

Morgan MJ, Liu Z (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21:103–115. https://doi.org/10.1038/cr.2010.178

Article  PubMed  CAS  Google Scholar 

Kageyama S, Yokoo H, Tomita K et al (2011) High glucose-induced apoptosis in human coronary artery endothelial cells involves up-regulation of death receptors. Cardiovasc Diabetol 10:73. https://doi.org/10.1186/1475-2840-10-73

Article  PubMed  PubMed Central  CAS  Google Scholar 

Elshaer SL, Lemtalsi T, El-Remessy AB (2018) High glucose-mediated tyrosine nitration of PI3-Kinase: a Molecular switch of Survival and apoptosis in endothelial cells. Antioxid (Basel) 7:47. https://doi.org/10.3390/antiox7040047

Article  CAS  Google Scholar 

An Y, Geng K, Wang H-Y et al (2023) Hyperglycemia-induced STING signaling activation leads to aortic endothelial injury in diabetes. Cell Commun Signal 21:365. https://doi.org/10.1186/s12964-023-01393-w

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bhatt MP, Lim Y-C, Hwang J et al (2013) C-peptide prevents hyperglycemia-induced endothelial apoptosis through inhibition of reactive oxygen species-mediated transglutaminase 2 activation. Diabetes 62:243–253. https://doi.org/10.2337/db12-0293

Article  PubMed  CAS  Google Scholar 

Simó R, Stitt AW, Gardner TW (2018) Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia 61:1902–1912. https://doi.org/10.1007/s00125-018-4692-1

Article  PubMed  PubMed Central  Google Scholar 

Kim I, Kim HG, So JN et al (2000) Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3’-Kinase/Akt signal transduction pathway. Circ Res 86:24–29. https://doi.org/10.1161/01.res.86.1.24

Article  PubMed  CAS  Google Scholar 

Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the Angiopoietin-Tie system. Nat Rev Mol Cell Biol 10:165–177. https://doi.org/10.1038/nrm2639

Article  PubMed  CAS  Google Scholar 

Sweeney MD, Ayyadurai S, Zlokovic BV (2016) Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 19:771–783. https://doi.org/10.1038/nn.4288

Article  PubMed  PubMed Central  CAS  Google Scholar 

Klaassen I, Van Noorden CJF, Schlingemann RO (2013) Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res 34:19–48. https://doi.org/10.1016/j.preteyeres.2013.02.001

Article  PubMed  CAS  Google Scholar 

Li W, Yanoff M, Liu X, Ye X (1997) Retinal capillary pericyte apoptosis in early human diabetic retinopathy. Chin Med J (Engl) 110:659–663

PubMed  CAS  Google Scholar 

Geraldes P, Hiraoka-Yamamoto J, Matsumoto M et al (2009) Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med 15:1298–1306. https://doi.org/10.1038/nm.2052

Article  PubMed  PubMed Central  CAS  Google Scholar 

Roy S, Kim D (2021) Retinal capillary basement membrane thickening: role in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 82:100903. https://doi.org/10.1016/j.preteyeres.2020.100903

Article  PubMed  Google Scholar 

Hayden MR, Sowers JR, Tyagi SC (2005) The central role of vascular extracellular matrix and basement membrane remodeling in metabolic syndrome and type 2 diabetes: the matrix preloaded. Cardiovasc Diabetol 4:9. https://doi.org/10.1186/1475-2840-4-9

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cantón A, Martinez-Cáceres EM, Hernández C et al (2004) CD4-CD8 and CD28 expression in T cells infiltrating the vitreous fluid in patients with proliferative diabetic retinopathy: a flow cytometric analysis. Arch Ophthalmol 122:743–749. https://doi.org/10.1001/archopht.122.5.743

Article  PubMed  Google Scholar 

Tedeschi T, Lee K, Zhu W, Fawzi AA (2022) Limited hyperoxia-induced proliferative retinopathy: a model of persistent retinal vascular dysfunction, preretinal fibrosis and hyaloidal vascular reprogramming for retinal rescue. PLoS ONE 17:e0267576. https://doi.org/10.1371/journal.pone.0267576

Article  PubMed  PubMed Central  CAS  Google Scholar 

Abu El-Asrar AM, De Hertogh G, van den Eynde K et al (2015) Myofibroblasts in proliferative diabetic retinopathy can originate from infiltrating fibrocytes and through endothelial-to-mesenchymal transition (EndoMT). Exp Eye Res 132:179–189. https://doi.org/10.1016/j.exer.2015.01.023

Article  PubMed  CAS  Google Scholar 

Xia M, Jiao L, Wang X-H et al (2023) Single-cell RNA sequencing reveals a unique pericyte type associated with capillary dysfunction. Theranostics 13:2515–2530. https://doi.org/10.7150/thno.83532

Article  PubMed  PubMed Central  CAS 

留言 (0)

沒有登入
gif