Angiogenesis is limited by LIC1-mediated lysosomal trafficking

Senger DR, Davis GE (2011) Angiogenesis. Cold Spring Harb Perspect Biol 3(8):a005090. https://doi.org/10.1101/cshperspect.a005090

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100(6):782–794. https://doi.org/10.1161/01.RES.0000259593.07661.1e

Article  CAS  PubMed  Google Scholar 

Simons M (2012) An inside view: VEGF receptor trafficking and signaling. Physiology 27(4):213–222. https://doi.org/10.1152/physiol.00016.2012

Article  CAS  PubMed  Google Scholar 

Watanabe C, Matsushita J, Azami T et al (2019) Generating Vegfr3 reporter transgenic mouse expressing membrane-tagged venus for visualization of VEGFR3 expression in vascular and lymphatic endothelial cells. PLoS ONE 14(1):e0210060. https://doi.org/10.1371/journal.pone.0210060

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jouette J, Guichet A, Claret SB (2019) Dynein-mediated transport and membrane trafficking control PAR3 polarised distribution. Elife. https://doi.org/10.7554/eLife.40212

Article  PubMed  PubMed Central  Google Scholar 

Xiang X, Qiu R (2020) Cargo-mediated activation of cytoplasmic dynein in vivo. Front Cell Dev Biol 8:598952. https://doi.org/10.3389/fcell.2020.598952

Article  PubMed  PubMed Central  Google Scholar 

Calderilla-Barbosa L, Seibenhener ML, Du Y et al (2014) Interaction of SQSTM1 with the motor protein dynein–SQSTM1 is required for normal dynein function and trafficking. J Cell Sci 127(Pt 18):4052–4063. https://doi.org/10.1242/jcs.152363

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumari S, Mg S, Mayor S (2010) Endocytosis unplugged: multiple ways to enter the cell. Cell Res 20(3):256–275. https://doi.org/10.1038/cr.2010.19

Article  CAS  PubMed  Google Scholar 

Trokter M, Mücke N, Surrey T (2012) Reconstitution of the human cytoplasmic dynein complex. Proc Natl Acad Sci USA 109(51):20895–20900. https://doi.org/10.1073/pnas.1210573110

Article  PubMed  PubMed Central  Google Scholar 

Roberts AJ, Numata N, Walker ML et al (2009) AAA+ Ring and linker swing mechanism in the dynein motor. Cell 136(3):485–495. https://doi.org/10.1016/j.cell.2008.11.049

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgess SA, Walker ML, Sakakibara H et al (2003) Dynein structure and power stroke. Nature 421(6924):715–718. https://doi.org/10.1038/nature01377

Article  CAS  PubMed  Google Scholar 

Yoder JH, Han M (2001) Cytoplasmic dynein light intermediate chain is required for discrete aspects of mitosis in Caenorhabditis elegans. Mol Biol Cell 12(10):2921–2933. https://doi.org/10.1091/mbc.12.10.2921

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mische S, He Y, Ma L et al (2008) Dynein light intermediate chain: an essential subunit that contributes to spindle checkpoint inactivation. Mol Biol Cell 19(11):4918–4929. https://doi.org/10.1091/mbc.e08-05-0483

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akhmanova A, Hammer JA 3rd (2010) Linking molecular motors to membrane cargo. Curr Opin Cell Biol 22(4):479–487. https://doi.org/10.1016/j.ceb.2010.04.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, Huang T, Hong Y et al (2018) the retromer complex and sorting nexins in neurodegenerative diseases. Front Aging Neurosci 10:79. https://doi.org/10.3389/fnagi.2018.00079

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang CC, Chao KC, Huang CJ et al (2020) Association between aberrant dynein cytoplasmic 1 light intermediate chain 1 expression levels, mucins and chemosensitivity in colorectal cancer. Mol Med Rep 22(1):185–192. https://doi.org/10.3892/mmr.2020.11086

Article  CAS  PubMed  PubMed Central  Google Scholar 

Even I, Reidenbach S, Schlechter T et al (2019) DLIC1, but not DLIC2, is upregulated in colon cancer and this contributes to proliferative overgrowth and migratory characteristics of cancer cells. Febs j 286(4):803–820. https://doi.org/10.1111/febs.14755

Article  CAS  PubMed  Google Scholar 

Suzuki SW, Emr SD (2018) Membrane protein recycling from the vacuole/lysosome membrane. J Cell Biol 217(5):1623–1632. https://doi.org/10.1083/jcb.201709162

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodriguez-Furlan C, Minina EA, Hicks GR (2019) Remove, recycle, degrade: regulating plasma membrane protein accumulation. Plant Cell 31(12):2833–2854. https://doi.org/10.1105/tpc.19.00433

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jopling HM, Odell AF, Pellet-Many C et al (2014) Endosome-to-plasma membrane recycling of VEGFR2 receptor tyrosine kinase regulates endothelial function and blood vessel formation. Cells 3(2):363–385. https://doi.org/10.3390/cells3020363

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia R, Bonifacino JS (2019) Lysosome positioning influences mTORC2 and AKT signaling. Mol Cell 75(1):26–38. https://doi.org/10.1016/j.molcel.2019.05.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pu J, Guardia CM, Keren-Kaplan T et al (2016) Mechanisms and functions of lysosome positioning. J Cell Sci 129(23):4329–4339. https://doi.org/10.1242/jcs.196287

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo X, Farias GG, Mattera R et al (2016) Rab5 and its effector FHF contribute to neuronal polarity through dynein-dependent retrieval of somatodendritic proteins from the axon. Proc Natl Acad Sci USA 113(36):E5318–E5327. https://doi.org/10.1073/pnas.1601844113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren M, Xu G, Zeng J et al (1998) Hydrolysis of GTP on rab11 is required for the direct delivery of transferrin from the pericentriolar recycling compartment to the cell surface but not from sorting endosomes. Proc Natl Acad Sci USA 95(11):6187–6192. https://doi.org/10.1073/pnas.95.11.6187

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olenick MA, Holzbaur ELF (2019) Dynein activators and adaptors at a glance. J Cell Sci. https://doi.org/10.1242/jcs.227132

Article  PubMed  PubMed Central  Google Scholar 

Keren-Kaplan T, Saric A, Ghosh S et al (2022) RUFY3 and RUFY4 are ARL8 effectors that promote coupling of endolysosomes to dynein-dynactin. Nat Commun 13(1):1506. https://doi.org/10.1038/s41467-022-28952-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jordens I, Fernandez-Borja M, Marsman M et al (2001) The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr Biol 11(21):1680–1685.

留言 (0)

沒有登入
gif