Hellstrom A, Smith LE, Dammann O (2013) Retinopathy of prematurity. Lancet 382(9902):1445–1457. https://doi.org/10.1016/S0140-6736(13)60178-6
PubMed PubMed Central Google Scholar
Fu Z, Nilsson AK, Hellstrom A, Smith LEH (2022) Retinopathy of prematurity: metabolic risk factors. Elife 11. https://doi.org/10.7554/eLife.80550
Sato T, Wada K, Arahori H, Kuno N, Imoto K, Iwahashi-Shima C, Kusaka S (2012) Serum concentrations of bevacizumab (avastin) and vascular endothelial growth factor in infants with retinopathy of prematurity. Am J Ophthalmol 153(2):327–333e321. https://doi.org/10.1016/j.ajo.2011.07.005
Zehden JA, Mortensen XM, Reddy A, Zhang AY (2022) Systemic and ocular adverse events with Intravitreal Anti-VEGF therapy used in the treatment of Diabetic Retinopathy: a review. Curr Diab Rep 22(10):525–536. https://doi.org/10.1007/s11892-022-01491-y
Yossuck P, Yan Y, Tadesse M, Higgins RD (2000) Dexamethasone and critical effect of timing on retinopathy. Invest Ophthalmol Vis Sci 41(10):3095–3099
Nakao S, Hata Y, Miura M, Noda K, Kimura YN, Kawahara S, Kita T, Hisatomi T, Nakazawa T, Jin Y, Dana MR, Kuwano M, Ono M, Ishibashi T, Hafezi-Moghadam A (2007) Dexamethasone inhibits interleukin-1beta-induced corneal neovascularization: role of nuclear factor-kappab-activated stromal cells in inflammatory angiogenesis. Am J Pathol 171(3):1058–1065. https://doi.org/10.2353/ajpath.2007.070172
PubMed PubMed Central Google Scholar
Cebeci Z, Kir N (2015) Role of implants in the treatment of diabetic macular edema: focus on the dexamethasone intravitreal implant. Diabetes Metab Syndr Obes 8:555–566. https://doi.org/10.2147/DMSO.S73540
PubMed PubMed Central Google Scholar
Rotschild T, Nandgaonkar BN, Yu K, Higgins RD (1999) Dexamethasone reduces oxygen induced retinopathy in a mouse model. Pediatr Res 46(1):94–100. https://doi.org/10.1203/00006450-199907000-00016
Lawas-Alejo PA, Slivka S, Hernandez H, Bry K, Hallman M (1999) Hyperoxia and glucocorticoid modify retinal vessel growth and interleukin-1 receptor antagonist in newborn rabbits. Pediatr Res 45(3):313–317. https://doi.org/10.1203/00006450-199903000-00004
Wenzel A, Grimm C, Seeliger MW, Jaissle G, Hafezi F, Kretschmer R, Zrenner E, Reme CE (2001) Prevention of photoreceptor apoptosis by activation of the glucocorticoid receptor. Invest Ophthalmol Vis Sci 42(7):1653–1659
Fu J, Lam TT, Tso MO (1992) Dexamethasone ameliorates retinal photic injury in albino rats. Exp Eye Res 54(4):583–594. https://doi.org/10.1016/0014-4835(92)90137-h
She H, Nakazawa T, Matsubara A, Connolly E, Hisatomi T, Noda K, Kim I, Gragoudas ES, Miller JW (2008) Photoreceptor protection after photodynamic therapy using dexamethasone in a rat model of choroidal neovascularization. Invest Ophthalmol Vis Sci 49(11):5008–5014. https://doi.org/10.1167/iovs.07-1154
Gallina D, Zelinka CP, Cebulla CM, Fischer AJ (2015) Activation of glucocorticoid receptors in Muller glia is protective to retinal neurons and suppresses microglial reactivity. Exp Neurol 273:114–125. https://doi.org/10.1016/j.expneurol.2015.08.007
PubMed PubMed Central Google Scholar
Hao W, Wenzel A, Obin MS, Chen CK, Brill E, Krasnoperova NV, Eversole-Cire P, Kleyner Y, Taylor A, Simon MI, Grimm C, Reme CE, Lem J (2002) Evidence for two apoptotic pathways in light-induced retinal degeneration. Nat Genet 32(2):254–260. https://doi.org/10.1038/ng984
Hou Y, Xie J, Wang S, Li D, Wang L, Wang H, Ni X, Leng S, Li G, Hou M, Peng J (2022) Glucocorticoid receptor modulates myeloid-derived suppressor cell function via mitochondrial metabolism in immune thrombocytopenia. Cell Mol Immunol 19(7):764–776. https://doi.org/10.1038/s41423-022-00859-0
PubMed PubMed Central Google Scholar
Chiang MF, Quinn GE, Fielder AR, Ostmo SR, Paul Chan RV, Berrocal A, Binenbaum G, Blair M, Peter Campbell J, Capone A Jr., Chen Y, Dai S, Ells A, Fleck BW, Good WV, Elizabeth Hartnett M, Holmstrom G, Kusaka S, Kychenthal A, Lepore D, Lorenz B, Martinez-Castellanos MA, Ozdek S, Ademola-Popoola D, Reynolds JD, Shah PK, Shapiro M, Stahl A, Toth C, Vinekar A, Visser L, Wallace DK, Wu WC, Zhao P, Zin A (2021) International classification of retinopathy of Prematurity, Third Edition. Ophthalmology 128(10):e51–e68. https://doi.org/10.1016/j.ophtha.2021.05.031
Ohnell HM, Andreasson S, Granse L (2022) Dexamethasone Eye drops for the treatment of retinopathy of Prematurity. Ophthalmol Retina 6(2):181–182. https://doi.org/10.1016/j.oret.2021.09.002
Smith LE, Wesolowski E, McLellan A, Kostyk SK, D’Amato R, Sullivan R, D’Amore PA (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35(1):101–111
Connor KM, Krah NM, Dennison RJ, Aderman CM, Chen J, Guerin KI, Sapieha P, Stahl A, Willett KL, Smith LE (2009) Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc 4(11):1565–1573. https://doi.org/10.1038/nprot.2009.187
PubMed PubMed Central Google Scholar
International Committee for the Classification of Retinopathy of P (2005) The International classification of retinopathy of Prematurity revisited. Arch Ophthalmol 123(7):991–999. https://doi.org/10.1001/archopht.123.7.991
Stahl A, Chen J, Sapieha P, Seaward MR, Krah NM, Dennison RJ, Favazza T, Bucher F, Lofqvist C, Ong H, Hellstrom A, Chemtob S, Akula JD, Smith LE (2010) Postnatal weight gain modifies severity and functional outcome of oxygen-induced proliferative retinopathy. Am J Pathol 177(6):2715–2723. https://doi.org/10.2353/ajpath.2010.100526
PubMed PubMed Central Google Scholar
Kramer A, Green J, Pollard J Jr., Tugendreich S (2014) Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30(4):523–530. https://doi.org/10.1093/bioinformatics/btt703
Binet F, Cagnone G, Crespo-Garcia S, Hata M, Neault M, Dejda A, Wilson AM, Buscarlet M, Mawambo GT, Howard JP, Diaz-Marin R, Parinot C, Guber V, Pilon F, Juneau R, Laflamme R, Sawchyn C, Boulay K, Leclerc S, Abu-Thuraia A, Cote JF, Andelfinger G, Rezende FA, Sennlaub F, Joyal JS, Mallette FA, Sapieha P (2020) Neutrophil extracellular traps target senescent vasculature for tissue remodeling in retinopathy. Science 369(6506). https://doi.org/10.1126/science.aay5356
Pagliarani A, Nesci S, Ventrella V (2013) Modifiers of the oligomycin sensitivity of the mitochondrial F1F0-ATPase. Mitochondrion 13(4):312–319. https://doi.org/10.1016/j.mito.2013.04.005
Rivera JC, Holm M, Austeng D, Morken TS, Zhou TE, Beaudry-Richard A, Sierra EM, Dammann O, Chemtob S (2017) Retinopathy of prematurity: inflammation, choroidal degeneration, and novel promising therapeutic strategies. J Neuroinflammation 14(1):165. https://doi.org/10.1186/s12974-017-0943-1
PubMed PubMed Central Google Scholar
Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T (2015) Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res 45:30–57. https://doi.org/10.1016/j.preteyeres.2014.11.004
Wright K, Wright SP (1994) Lack of association of glucocorticoid therapy and retinopathy of prematurity. Arch Pediatr Adolesc Med 148(8):848–852. https://doi.org/10.1001/archpedi.1994.02170080078015
Sobel DB, Philip AG (1992) Prolonged dexamethasone therapy reduces the incidence of cryotherapy for retinopathy of prematurity in infants of less than 1 kilogram birth weight with bronchopulmonary dysplasia. Pediatrics 90(4):529–533
Zeng Y, Ge G, Lei C, Zhang M (2022) Beyond fetal immunity: a systematic review and Meta-analysis of the Association between Antenatal Corticosteroids and Retinopathy of Prematurity. Front Pharmacol 13:759742. https://doi.org/10.3389/fphar.2022.759742
PubMed PubMed Central Google Scholar
Movsas TZ, Spitzer AR, Gewolb IH (2016) Postnatal corticosteroids and risk of retinopathy of prematurity. J AAPOS 20(4):348–352. https://doi.org/10.1016/j.jaapos.2016.05.008
Du J, McEwen B, Manji HK (2009) Glucocorticoid receptors modulate mitochondrial function: a novel mechanism for neuroprotection. Commun Integr Biol 2(4):350–352. https://doi.org/10.4161/cib.2.4.8554
PubMed PubMed Central Google Scholar
Kokkinopoulou I, Moutsatsou P (2021) Mitochondrial glucocorticoid receptors and their actions. Int J Mol Sci 22(11). https://doi.org/10.3390/ijms22116054
Hunter RG, Seligsohn M, Rubin TG, Griffiths BB, Ozdemir Y, Pfaff DW, Datson NA, McEwen BS (2016) Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor. Proc Natl Acad Sci U S A 113(32):9099–9104. https://doi.org/10.1073/pnas.1602185113
PubMed PubMed Central Google Scholar
Psarra AM, Sekeris CE (2011) Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: role of the mitochondrial glucocorticoid receptor. Biochim Biophys Acta 1813(10):1814–1821. https://doi.org/10.1016/j.bbamcr.2011.05.014
Chap Z, Jones RH, Chou J, Hartley CJ, Entman ML, Field JB (1986) Effect of dexamethasone on hepatic glucose and insulin metabolism after oral glucose in conscious dogs. J Clin Invest 78(5):1355–1361. https://doi.org/10.1172/JCI112722
PubMed PubMed Central Google Scholar
Koorneef LL, van der Meulen M, Kooijman S, Sanchez-Lopez E, Scheerstra JF, Voorhoeve MC, Ramesh ANN, Rensen PCN, Giera M, Kroon J, Meijer OC (2022) Dexamethasone-associated metabolic effects in male mice are partially caused by depletion of endogenous corticosterone. Front Endocrinol (Lausanne) 13:960279. https://doi.org/10.3389/fendo.2022.960279
Amin SB, Sinkin RA, McDermott MP, Kendig JW (1999) Lipid intolerance in neonates receiving dexamethasone for bronchopulmonary dysplasia. Arch Pediatr Ad
留言 (0)