Therapeutic Potential of Resveratrol and Lignans in the Management of Tuberculosis

Daniel, T. M., Bates, J. H., & Downes, K. A. (2014). History of Tuberculosis. In: B. R. Bloom (Ed.), Tuberculosis (pp. 13–24). ASM Press. https://doi.org/10.1128/9781555818357.ch2.

Herzog, H. (1998). History of tuberculosis. Respiration, 65, 5–15.

Article  CAS  PubMed  Google Scholar 

Ernst, J. D. (2012). The immunological life cycle of tuberculosis. Nature Reviews Immunology, 12, 581–591. https://doi.org/10.1038/nri3259.

Article  CAS  PubMed  Google Scholar 

Yadav, S., Kumar, A. (2024). Tuberculosis: History, Pathophsiology, Antituberculosis Drugs and Herbal Approach of The Treatment. https://primerascientific.com/pdf/psmph/PSMPH-04-134.pdf (accessed April 13, 2024).

Cadena, A. M., Fortune, S. M., & Flynn, J. L. (2017). Heterogeneity in tuberculosis. Nature Reviews Immunology, 17, 691–702. https://doi.org/10.1038/nri.2017.69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stewart, G. R., Robertson, B. D., & Young, D. B. (2003). Tuberculosis: a problem with persistence. Nature Reviews Microbiology, 1, 97–105. https://doi.org/10.1038/nrmicro749.

Article  CAS  PubMed  Google Scholar 

Cardona, P.-J., & Ruiz-Manzano, J. (2004). On the nature of Mycobacterium tuberculosis-latent bacilli. European Respiratory Journal, 24, 1044–1051. https://doi.org/10.1183/09031936.04.00072604.

Article  PubMed  Google Scholar 

American Association of Critical-Care Nurses (2009). Tuberculosis: Pathophysiology, Clinical Features and Diagnosis, Critical Care Nurse, https://aacnjournals.org/ccnonline/article-abstract/29/2/34/4326/Tuberculosis-Pathophysiology-Clinical-Features-and.

Campbell, I. A., & Bah-Sow, O. (2006). Pulmonary tuberculosis: diagnosis and treatment. BMJ, 332, 1194–1197.

Article  PubMed  PubMed Central  Google Scholar 

Malik, J. A., Affan Khan, M., Lamba, T., Adeel Zafar, M., Nanda, S., Owais, M., & Agrewala, J. N. (2024). Immunosuppressive effects of morphine on macrophage polarization and function. European Journal of Pharmacology, 975, 176637. https://doi.org/10.1016/j.ejphar.2024.176637.

Article  CAS  PubMed  Google Scholar 

Oxford Academic (n.d.). Toll-Like Receptor 4 as an Immune Receptor Against Mycobacterium tuberculosis: A Systematic Review, Laboratory Medicine. https://academic.oup.com/labmed/article/50/2/117/5075564 (accessed June 16, 2024).

Jha, A. K., Gairola, S., Kundu, S., Doye, P., Syed, A. M., Ram, C., Murty, U. S., Naidu, V. G. M., & Sahu, B. D. (2021). Toll-like receptor 4: An attractive therapeutic target for acute kidney injury. Life Sciences, 271, 119155. https://doi.org/10.1016/j.lfs.2021.119155.

Malik, J. A., & Agrewala, J. N. (2024). Morphine acts via TLR4 resulting in neuroinflammation and immunosuppression. Medical Hypotheses, 186, 111335. https://doi.org/10.1016/j.mehy.2024.111335.

Article  CAS  Google Scholar 

Sánchez, D., Rojas, M., Hernández, I., Radzioch, D., García, L. F., & Barrera, L. F. (2010). Role of TLR2-and TLR4-mediated signaling in Mycobacterium tuberculosis-induced macrophage death. Cellular Immunology, 260, 128–136.

Article  PubMed  Google Scholar 

Garg, R. K. (1999). Tuberculosis of the central nervous system. Postgraduate Medical Journal, 75, 133–140.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shakarchi, F. (2015) Ocular tuberculosis: current perspectives. OPTH, 2223. https://doi.org/10.2147/OPTH.S65254.

Serrallach, C. P., & Pardo, D. R. (2013). Bone and joint tuberculosis. European Spine Journal. https://link.springer.com/article/10.1007/s00586-012-2331-y.

Garg, R. K., & Somvanshi, D. S. (2011). Spinal tuberculosis: A review. The Journal of Spinal Cord Medicine, 34, 440–454. https://doi.org/10.1179/2045772311Y.0000000023.

Article  PubMed  PubMed Central  Google Scholar 

Hu, Z., Shi, L., Xie, J., & Fan, X.-Y. Editorial: Innate and adaptive immunity against tuberculosis infection: diagnostics, vaccines, and therapeutics. Frontiers in Immunology, 15, (2024). https://doi.org/10.3389/fimmu.2024.1366976.

Paramasivan, C. N., Rehman, F., Wares, F., Sundar Mohan, N., Sundar, S., Devi, S., & Narayanan, P. R. (2010). First-and second-line drug resistance patterns among previously treated tuberculosis patients in India. The International Journal of Tuberculosis and Lung Disease, 14, 243–246.

CAS  PubMed  Google Scholar 

Cegielski, J. P., Kurbatova, E., Van Der Walt, M., Brand, J., Ershova, J., Tupasi, T., Caoili, J. C., Dalton, T., Contreras, C., & Yagui, M. (2016). Multidrug-resistant tuberculosis treatment outcomes in relation to treatment and initial versus acquired second-line drug resistance. Clinical Infectious Diseases, 62, 418–430.

PubMed  Google Scholar 

World Health Organization (2015). The end TB strategy, World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/331326/WHO-HTM-TB-2015.19-eng.pdf?sequence=1 (accessed April 9, 2024).

Implementing the end TB strategy: the essentials, 2022 update. https://www.who.int/publications-detail-redirect/9789240065093 (accessed April 9, 2024).

Bagcchi, S. (2023). WHO’s Global Tuberculosis Report 2022. The Lancet Microbe, 4, e20. https://doi.org/10.1016/S2666-5247(22)00359-7.

Article  PubMed  Google Scholar 

World Health Organization (2013). Global Tuberculosis Report 2013. World Health Organization.

Global tuberculosis report (2020). https://www.who.int/publications-detail-redirect/9789240013131 (accessed April 6, 2024).

Global tuberculosis report (2018). https://www.who.int/publications-detail-redirect/9789241565646 (accessed April 6, 2024).

Davies, P. D. O. (2003). The Role of DOTS in Tuberculosis Treatment and Control. American Journal of Respiratory Medicine, 2, 203–209. https://doi.org/10.1007/BF03256649.

Article  PubMed  Google Scholar 

Iseman, M. D. (2002). Tuberculosis therapy: past, present and future. European Respiratory Journal, 20, 87S–94s. https://doi.org/10.1183/09031936.02.00309102.

Article  Google Scholar 

Malviya, V., Tawar, M., Burange, P., & Jodh, R. (2022). A Brief Review on Resveratrol. AJPS, 157–162. https://doi.org/10.52711/2231-5659.2022.00027.

Pirola, L., & Fröjdö, S. (2008). Resveratrol: One molecule, many targets. IUBMB Life, 60, 323–332. https://doi.org/10.1002/iub.47.

Article  CAS  PubMed  Google Scholar 

Cucciolla, V., Borriello, A., Oliva, A., Galletti, P., Zappia, V., & Ragione, F. D. (2007). Resveratrol: From Basic Science to the Clinic. Cell Cycle, 6, 2495–2510. https://doi.org/10.4161/cc.6.20.4815.

Article  CAS  PubMed  Google Scholar 

King, R. E., Bomser, J. A., & Min, D. B. (2006). Bioactivity of Resveratrol. Comprehensive Reviews in Food Science and Food Safety, 5, 65–70. https://doi.org/10.1111/j.1541-4337.2006.00001.x.

Article  CAS  Google Scholar 

Borriello, A., Bencivenga, D., Caldarelli, I., Tramontano, A., Borgia, A., Zappia, V., & Della Ragione, F. (2014) Resveratrol: From Basic Studies to Bedside. In: V. Zappia, S. Panico, G. L. Russo, A. Budillon, F. Della Ragione (Eds.), Advances in Nutrition and Cancer (pp. 167–184). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38007-5_10.

Jain, S., Sharma, S., Paliwal, A., Dwivedi, J., Paliwal, S., Paliwal, V., Paliwal, S., & Sharma, J. (2024). Discovery of novel fatty acid amide hydrolase (FAAH) inhibitors as anti-Alzheimer’s agents through pharmacophore-based virtual screening, molecular docking and experimental validation. Medicinal Chemistry Research. https://link.springer.com/article/10.1007/s00044-023-03170-3.

Porat, Y., Abramowitz, A., & Gazit, E. (2006). Inhibition of Amyloid Fibril Formation by Polyphenols: Structural Similarity and Aromatic Interactions as a Common Inhibition Mechanism. Chemical Biology & Drug Design, 67, 27–37. https://doi.org/10.1111/j.1747-0285.2005.00318.x.

Article  CAS  Google Scholar 

Saqib, U., Kelley, T. T., Panguluri, S. K., Liu, D., Savai, R., Baig, M. S., & Schürer, S. C. (2018). Polypharmacology or Promiscuity? Structural Interactions of Resveratrol With Its Bandwagon of Targets. Frontiers in Pharmacology, 9, https://doi.org/10.3389/fphar.2018.01201.

Patel, S., Jain, S., Gururani, R., Sharma, S., & Dwivedi, J. (2024). Insights on synthetic strategies and structure-activity relationship of donepezil and its derivatives. Medicinal Chemistry Research, https://link.springer.com/article/10.1007/s00044-024-03186-3.

Yang, H., Hu, J., Chen, Y. J., & Ge, B. (2019). Role of Sirt1 in innate immune mechanisms against Mycobacterium tuberculosis via the inhibition of TAK1 activation. Archives of Biochemistry and Biophysics, 667, 49–58. https://doi.org/10.1016/j.abb.2019.04.006.

Michan, S., & Sinclair, D. (2007). Sirtuins in mammals: insights into their biological function. The Biochemical Journal, 404, 1. https://doi.org/10.1042/BJ20070140.

Article  CAS  PubMed  Google Scholar 

Zhang, K., Sowers, M. L., Cherryhomes, E. I., Singh, V. K., Mishra, A., Restrepo, B. I., Khan, A., & Jagannath, C. (2023). Sirtuin-dependent metabolic and epigenetic regulation of macrophages during tuberculosis. Frontiers in Immunology, 14, https://doi.org/10.3389/fimmu.2023.1121495.

Guarente, L. (2011). Sirtuins, Aging and Metabolism. https://symposium.cshlp.org/content/76/81.

Yang, Y., Liu, Y., Wang, Y., Chao, Y., Zhang, J., Jia, Y, Tie, J., & Hu, D. (2022). Regulation of SIRT1 and Its Roles in Inflammation. Frontier Immunology. https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2022.831168/full.

Kang, Y. J., Jang, J. Y., Kwon, Y. H., Lee, J. H., Lee, S., Park, Y., Jung, Y. S., Im, E., Moon, H. R., Chung, H. Y., Kim, N. D. (2022). MHY2245, a Sirtuin Inhibitor, Induces Cell Cycle Arrest and Apoptosis in HCT116 Human Colorectal Cancer Cells, https://www.mdpi.com/1422-0067/23/3/1590.

Berman, A. Y., Motechin, R. A., Wiesenfeld, M. Y., & Holz, M. K. (2017). The therapeutic potential of resveratrol: a review of clinical trials. npj Precision Oncology, 1, 1–9. https://doi.org/10.1038/s41698-017-0038-6.

Article  Google Scholar 

Patel, S., Sathyanathan, V., & Salaman, S. D. (2024). Molecular mechanisms underlying cisplatin-induced nephrotoxicity and the potential ameliorative effects of essential oils: A comprehensive review. Tissue and Cell, 88, 102377. https://doi.org/10.1016/j.tice.2024.102377.

Article  CAS  PubMed  Google Scholar 

Patel, S., Shukla, J., Jain, S., Paliwal, V., Tripathi, N., Paliwal, S., & Sharma, S. (2022). Repositioning of tubocurarine as analgesic and anti-inflammatory agent: Exploring beyond myorelaxant activity. Biochemical Pharmacology, 205, 115248. https://doi.org/10.1016/j.bcp.2022.115248.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif