TLR3-mediated Astrocyte Responses in High and Normal Glucose Adaptation Differently Regulated by Metformin

Ristow, M. (2004). Neurodegenerative disorders associated with diabetes mellitus. Journal of Molecular Medicine, 82, 510–29. https://doi.org/10.1007/s00109-004-0552-1.

Article  PubMed  Google Scholar 

Jafar, N., Edriss, H., & Nugent, K. (2016). The effect of short-term hyperglycemia on the innate immune system. The American Journal of the Medical Sciences, 351, 201–211. https://doi.org/10.1016/J.AMJMS.2015.11.011.

Article  PubMed  Google Scholar 

Duran J., Gruart A., López-Ramos J. C., et al. (2019) Glycogen in astrocytes and neurons: physiological and pathological aspects. In: Advances in Neurobiology. Springer New York LLC, pp 311–329

Bélanger, M., Allaman, I., & Magistretti, P. J. (2011). Brain energy metabolism: Focus on Astrocyte-neuron metabolic cooperation. Cell Metabolism, 14, 724–738. https://doi.org/10.1016/j.cmet.2011.08.016.

Article  CAS  PubMed  Google Scholar 

Selvarajah, D., & Tesfaye, S. (2006). Central nervous system involvement in diabetes mellitus. Current Diabetes Reports, 6, 431–438. https://doi.org/10.1007/S11892-006-0075-Y.

Article  CAS  PubMed  Google Scholar 

Farina, C., Aloisi, F., & Meinl, E. (2007). Astrocytes are active players in cerebral innate immunity. Trends in Immunology, 28, 138–145. https://doi.org/10.1016/j.it.2007.01.005.

Article  CAS  PubMed  Google Scholar 

Chistyakov, D. V., Astakhova, A. A., & Sergeeva, M. G. (2018). Resolution of inflammation and mood disorders. Experimental and Molecular Pathology, 105, 190–201. https://doi.org/10.1016/j.yexmp.2018.08.002.

Article  CAS  PubMed  Google Scholar 

Cunningham, C., Dunne, A., & Lopez-Rodriguez, A. B. (2019). Astrocytes: heterogeneous and dynamic phenotypes in neurodegeneration and innate immunity. Neuroscientist, 25, 455–474. https://doi.org/10.1177/1073858418809941.

Article  PubMed  Google Scholar 

Escartin, C., Galea, E., & Lakatos, A., et al. (2021). Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 24, 312–325. https://doi.org/10.1038/s41593-020-00783-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, L., Acioglu, C., Heary, R. F., & Elkabes, S. (2021). Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases. Brain, Behavior, and Immunity, 91, 740–755. https://doi.org/10.1016/J.BBI.2020.10.007.

Article  CAS  PubMed  Google Scholar 

Sofroniew, M. V. (2015). Astrocyte barriers to neurotoxic inflammation. Nature Reviews Neuroscience, 16, 249–63. https://doi.org/10.1038/nrn3898.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawai, T., & Akira, S. (2011). Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity, 34, 637–50. https://doi.org/10.1016/j.immuni.2011.05.006.

Article  CAS  PubMed  Google Scholar 

Alexopoulou, L., Holt, A. C., Medzhitov, R., & Flavell, R. A. (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature, 413, 732–738. https://doi.org/10.1038/35099560.

Article  CAS  PubMed  Google Scholar 

Swanson, P. A., & McGavern, D. B. (2015). Viral diseases of the central nervous system. Current Opinion in Virology, 11, 44–54. https://doi.org/10.1016/J.COVIRO.2014.12.009.

Article  PubMed  PubMed Central  Google Scholar 

Potokar M., Jorgačevski J., Zorec R. (2019) Astrocytes in flavivirus infections. International Journal of Molecular Sciences 20: https://doi.org/10.3390/IJMS20030691

Scumpia, P. O., Kelly, K. M., Reeves, W. H., & Stevens, B. R. (2005). Double-stranded RNA signals antiviral and inflammatory programs and dysfunctional glutamate transport in TLR3-expressing astrocytes. Glia, 52, 153–162. https://doi.org/10.1002/GLIA.20234.

Article  PubMed  Google Scholar 

Chistyakov, D. V., Azbukina, N. V., & Lopachev, A. V., et al. (2018). Rosiglitazone as a Modulator of TLR4 and TLR3 Signaling Pathways in Rat Primary Neurons and Astrocytes. International Journal of Molecular Sciences, 19, 113 https://doi.org/10.3390/ijms19010113.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chistyakov, D. V., Azbukina, N. V., & Astakhova, A. A., et al. (2019). Toll-like receptors control p38 and JNK MAPK signaling pathways in rat astrocytes differently, when cultured in normal or high glucose concentrations. Neurochemistry International, 131, 104513 https://doi.org/10.1016/j.neuint.2019.104513.

Article  CAS  PubMed  Google Scholar 

Bai B., Chen H. (2021) Metformin: a novel weapon against inflammation. Frontiers in Pharmacology 12: https://doi.org/10.3389/FPHAR.2021.622262

Jing, Y., Wu, F., & Li, D., et al. (2018). Metformin improves obesity-associated inflammation by altering macrophages polarization. Molecular and Cellular Endocrinology, 461, 256–264. https://doi.org/10.1016/j.mce.2017.09.025.

Article  CAS  PubMed  Google Scholar 

Qi, T., Chen, Y., & Li, H., et al. (2017). A role for PFKFB3/iPFK2 in metformin suppression of adipocyte inflammatory responses. Journal of Molecular Endocrinology, 59, 49–59. https://doi.org/10.1530/JME-17-0066.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou J., Massey S., Story D., Li L. (2018) Metformin: an old drug with new applications. International Journal of Molecular Sciences 19: https://doi.org/10.3390/IJMS19102863

Markowicz-Piasecka, M., Sikora, J., & Szydłowska, A., et al. (2017). Metformin - a future therapy for neurodegenerative diseases: theme: drug discovery, development and delivery in Alzheimer’s disease guest editor: Davide Brambilla. Pharmaceutical Research, 34, 2614–2627. https://doi.org/10.1007/S11095-017-2199-Y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rotermund C., Machetanz G., Fitzgerald J.C. (2018) The therapeutic potential of metformin in neurodegenerative diseases. Frontiers in Endocrinology 9: https://doi.org/10.3389/FENDO.2018.00400

Li, W., Chaudhari, K., & Shetty, R., et al. (2019). Metformin alters locomotor and cognitive function and brain metabolism in normoglycemic mice. Aging and Disease, 10, 949–963. https://doi.org/10.14336/AD.2019.0120.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ge, A., Wang, S., Miao, B., & Yan, M. (2018). Effects of metformin on the expression of AMPK and STAT3 in the spinal dorsal horn of rats with neuropathic pain. Molecular Medicine Reports, 17, 5229–5237. https://doi.org/10.3892/MMR.2018.8541.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ou, Z., Kong, X., & Sun, X., et al. (2018). Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain, Behavior, and Immunity, 69, 351–363. https://doi.org/10.1016/j.bbi.2017.12.009.

Article  CAS  PubMed  Google Scholar 

Wang, G., Cui, W., & Chen, S., et al. (2021). Metformin alleviates high glucose-induced ER stress and inflammation by inhibiting the interaction between caveolin1 and AMPKα in rat astrocytes. Biochemical and Biophysical Research Communications, 534, 908–913. https://doi.org/10.1016/J.BBRC.2020.10.075.

Article  CAS  PubMed  Google Scholar 

Hohnholt, M. C., Blumrich, E. M., Waagepetersen, H. S., & Dringen, R. (2017). The antidiabetic drug metformin decreases mitochondrial respiration and tricarboxylic acid cycle activity in cultured primary rat astrocytes. Journal of Neuroscience Research, 95, 2307–2320. https://doi.org/10.1002/jnr.24050.

Article  CAS  PubMed  Google Scholar 

Westhaus, A., Blumrich, E. M., & Dringen, R. (2017). The antidiabetic drug metformin stimulates glycolytic lactate production in cultured primary rat astrocytes. Neurochemical Research, 42, 294–305. https://doi.org/10.1007/S11064-015-1733-8.

Article  CAS  PubMed  Google Scholar 

Gorbatenko, V. O., Goriainov, S. V. & Babenko, V. A. et al.(2022). Anti-Inflammatory properties of metformin during cultivation of primary rat astrocytes in a medium with high glucose concentration. Biochemistry, 87(7), 577–589.

CAS  PubMed 

留言 (0)

沒有登入
gif