ADAM10 Alleviates Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury by Activating the Notch Signaling Pathway

Turer, A. T., & Hill, J. A. (2010). Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. American College of Cardiology, 106(3), 360–368.

Article  Google Scholar 

Li, X., Liu, M., Sun, R., Zeng, Y., Chen, S., & Zhang, P. (2016). Protective approaches against myocardial ischemia reperfusion injury. Experimental and Therapeutic Medicine, 12(6), 3823–3829.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chi, H. J., Chen, M. L., & Yang, X. C., et al. (2017). Progress in therapies for myocardial ischemia reperfusion injury. Current Drug Targets, 18(15), 1712–1721.

Article  CAS  PubMed  Google Scholar 

Zhou, B., Lin, W., & Long, Y., et al. (2022). Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduction and Targeted Therapy, 7(1), 95.

Article  PubMed  PubMed Central  Google Scholar 

Gude, N., & Sussman, M. (2012). Notch signaling and cardiac repair. Journal of Molecular and Cellular Cardiology, 52(6), 1226–1232.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrari, R., & Rizzo, P. (2014). The Notch pathway: a novel target for myocardial remodelling therapy? European Heart Journal, 35(32), 2140–2145.

Article  CAS  PubMed  Google Scholar 

Wang, Z., Wang, Z., Wang, T., Yuan, J., Wang, X., & Zhang, Z. (2019). Inhibition of miR-34a-5p protected myocardial ischemia reperfusion injury-induced apoptosis and reactive oxygen species accumulation through regulation of Notch Receptor 1 signaling. Reviews in Cardiovascular Medicine, 20(3), 187–197.

Article  PubMed  Google Scholar 

Guo, P., Yi, H., & Han, M., et al. (2023). Dexmedetomidine alleviates myocardial ischemia-reperfusion injury by down-regulating miR-34b-3p to activate the Jagged1/Notch signaling pathway. International Immunopharmacology, 116, 109766.

Article  CAS  PubMed  Google Scholar 

Smith, Jr., T. M., Tharakan, A., & Martin, R. K. (2020). Targeting ADAM10 in cancer and autoimmunity. Frontiers in Immunology, 11, 499.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuhn, P. H., Colombo, A. V., Schusser, B., et al. (2016). Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. Elife 5, e12748.

van Tetering, G., van Diest, P., Verlaan, I., van der Wall, E., Kopan, R., & Vooijs, M. (2009). Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. Journal of Biological Chemistry, 284(45), 31018–31027.

Article  PubMed  PubMed Central  Google Scholar 

Li, B., Zhu, C., & Dong, L., et al. (2020). ADAM10 mediates ectopic proximal tubule development and renal fibrosis through Notch signalling. Journal of Pathology, 252(3), 274–289.

Article  CAS  PubMed  Google Scholar 

Lindsey, R. C., Xing, W., Pourteymoor, S., Godwin, C., Gow, A., & Mohan, S. (2019). Novel role for claudin-11 in the regulation of osteoblasts via modulation of ADAM10-mediated notch signaling. Journal of Bone and Mineral Research, 34(10), 1910–1922.

Article  CAS  PubMed  Google Scholar 

Meng, H., Li, B., & Xu, W., et al. (2022). miR-140-3p enhances the sensitivity of LUAD cells to antitumor agents by targeting the ADAM10/Notch pathway. Journal of Cancer, 13(15), 3660–3673.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, C., Tian, L., & Chi, C., et al. (2010). Adam10 is essential for early embryonic cardiovascular development. Developmental Dynamics, 239(10), 2594–2602.

Article  CAS  PubMed  Google Scholar 

Zhu, Z., Zhu, J., & Zhao, X., et al. (2015). All-trans retinoic acid ameliorates myocardial ischemia/reperfusion injury by reducing cardiomyocyte apoptosis. PLoS ONE, 10(7), e0133414.

Article  PubMed  PubMed Central  Google Scholar 

Zhou, X. L., Wan, L., & Liu, J. C. (2013). Activated Notch1 reduces myocardial ischemia reperfusion injury in vitro during ischemic postconditioning by crosstalk with the RISK signaling pathway. Chinese Medical Journal, 126(23), 4545–4551.

Article  CAS  PubMed  Google Scholar 

Yu, B., & Song, B. (2014). Notch 1 signalling inhibits cardiomyocyte apoptosis in ischaemic postconditioning. Heart, Lung and Circulation, 23(2), 152–158.

Article  PubMed  Google Scholar 

Feng, G., Zhang, H., & Guo, Q., et al. (2023). NONHSAT098487.2 protects cardiomyocytes from oxidative stress injury by regulating the Notch pathway. Heliyon, 9(6), e17388.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, J., Liu, Y., & Liu, Y., et al. (2023). Recent advances in nanomedicines for imaging and therapy of myocardial ischemia-reperfusion injury. Journal of Controlled Release, 353, 563–590.

Article  CAS  PubMed  Google Scholar 

Liu, Y., Tan, Y., & Cao, G., et al. (2023). Bergenin alleviates myocardial ischemia-reperfusion injury via SIRT1 signaling. Biomedicine & Pharmacotherapy, 158, 114100.

Article  CAS  Google Scholar 

Klapproth, E., Witt, A., & Klose, P., et al. (2022). Targeting cardiomyocyte ADAM10 ectodomain shedding promotes survival early after myocardial infarction. Nature Communications, 13(1), 7648.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, X., Pan, F., He, B., & Fang, C. (2021). Inhibition of ADAM10 ameliorates doxorubicin-induced cardiac remodeling by suppressing N-cadherin cleavage. Open Life Sciences, 16(1), 856–866.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuo, L., Zhou, T., Pannell, B. K., Ziegler, A. C., & Best, T. M. (2015). Biological and physiological role of reactive oxygen species—the good, the bad and the ugly. Acta Physiologica, 214(3), 329–348.

Article  CAS  PubMed  Google Scholar 

Zhu, X., & Zuo, L. (2013). Characterization of oxygen radical formation mechanism at early cardiac ischemia. Cell Death and Disease, 4(9), e787.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jang, S., Lewis, T. S., & Powers, C., et al. (2017). Elucidating mitochondrial electron transport chain supercomplexes in the heart during ischemia-reperfusion. Antioxidants & Redox Signaling, 27(1), 57–69.

Article  CAS  Google Scholar 

Simon, H. U., Haj-Yehia, A., & Levi-Schaffer, F. (2000). Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 5(5), 415–418.

Article  CAS  PubMed  Google Scholar 

Volkmann, N., Marassi, F. M., Newmeyer, D. D., & Hanein, D. (2014). The rheostat in the membrane: BCL-2 family proteins and apoptosis. Cell death and Differentiation, 21(2), 206–215.

Article  CAS  PubMed  Google Scholar 

Taylor, R. C., Cullen, S. P., & Martin, S. J. (2008). Apoptosis: controlled demolition at the cellular level. Nature Reviews Molecular Cell Biology, 9(3), 231–241.

Article  CAS  PubMed  Google Scholar 

Lu, L., Zhang, H., Dong, W., Peng, W., & Yang, J. (2018). MiR-381 negatively regulates cardiomyocyte survival by suppressing Notch signaling. In Vitro Cellular & Developmental Biology - Animal, 54(8), 610–619.

Article  CAS  Google Scholar 

Li, Y., Hiroi, Y., & Liao, J. K. (2010). Notch signaling as an important mediator of cardiac repair and regeneration after myocardial infarction. Trends in Cardiovascular Medicine, 20(7), 228–231.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif