Research Progress on the Role of Ubiquitination in Eye Diseases

Popovic, D., Vucic, D., & Dikic, I. (2014). Ubiquitination in disease pathogenesis and treatment. Nature Medicine, 20(11), 1242–1253. https://doi.org/10.1038/nm.3739.

Article  CAS  PubMed  Google Scholar 

Lacoursiere, R. E., Hadi, D., & Shaw, G. S. (2022). Acetylation, phosphorylation, ubiquitination (Oh My!): following post-translational modifications on the ubiquitin road. Biomolecules, 12(3), 467. https://doi.org/10.3390/biom12030467.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, E. W., Kim, J. H., Ahn, Y. H., Seo, J., Ko, A., Jeong, M., Kim, S. J., Ro, J. Y., Park, K. M., Lee, H. W., Park, E. J., Chun, K. H., & Song, J. (2012). Ubiquitination and degradation of the FADD adaptor protein regulate death receptor-mediated apoptosis and necroptosis. Nature Communications, 3, 978. https://doi.org/10.1038/ncomms1981.

Article  CAS  PubMed  Google Scholar 

González, A., Covarrubias-Pinto, A., Bhaskara, R. M., Glogger, M., Kuncha, S. K., Xavier, A., Seemann, E., Misra, M., Hoffmann, M. E., Bräuning, B., Balakrishnan, A., Qualmann, B., Dötsch, V., Schulman, B. A., Kessels, M. M., Hübner, C. A., Heilemann, M., Hummer, G., & Dikić, I. (2023). Ubiquitination regulates ER-phagy and remodelling of endoplasmic reticulum. Nature, 618(7964), 394–401. https://doi.org/10.1038/s41586-023-06089-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, P., Gan, W., Su, S., Hauenstein, A. V., Fu, T. M., Brasher, B., Schwerdtfeger, C., Liang, A. C., Xu, M., & Wei, W. (2018). K63-linked polyubiquitin chains bind to DNA to facilitate DNA damage repair. Science Signaling, 11(533), eaar8133. https://doi.org/10.1126/scisignal.aar8133.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weinberg, J., Gaur, M., Swaroop, A., & Taylor, A. (2022). Proteostasis in aging-associated ocular disease. Molecular Aspects of Medicine, 88, 101157. https://doi.org/10.1016/j.mam.2022.101157.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suresh, H. G., Pascoe, N., & Andrews, B. (2020). The structure and function of deubiquitinases: lessons from budding yeast. Open Biology, 10(10), 200279. https://doi.org/10.1098/rsob.200279.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kamihara, J., Bourdeaut, F., Foulkes, W. D., Molenaar, J. J., Mossé, Y. P., Nakagawara, A., Parareda, A., Scollon, S. R., Schneider, K. W., Skalet, A. H., States, L. J., Walsh, M. F., Diller, L. R., & Brodeur, G. M. (2017). Retinoblastoma and Neuroblastoma Predisposition and Surveillance. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 23(13), e98–e106. https://doi.org/10.1158/1078-0432.CCR-17-0652.

Article  CAS  PubMed  Google Scholar 

He, H., Lee, C., & Kim, J. K. (2018). UHRF1 depletion sensitizes retinoblastoma cells to chemotherapeutic drugs via downregulation of XRCC4. Cell Death & Disease, 9(2), 164. https://doi.org/10.1038/s41419-017-0203-4.

Article  CAS  Google Scholar 

Chen, X., Zhang, G., Li, P., Yu, J., Kang, L., Qin, B., Wang, Y., Wu, J., Wang, Y., Zhang, J., Qin, M., & Guan, H. (2022). SYVN1-mediated ubiquitination and degradation of MSH3 promotes the apoptosis of lens epithelial cells. The FEBS Journal, 289(18), 5682–5696. https://doi.org/10.1111/febs.16447.

Article  CAS  PubMed  Google Scholar 

Löfgren, S. (2017). Solar ultraviolet radiation cataract. Experimental Eye Research, 156, 112–116. https://doi.org/10.1016/j.exer.2016.05.026.

Article  CAS  PubMed  Google Scholar 

Rong, X., Rao, J., Li, D., Jing, Q., Lu, Y., & Ji, Y. (2019). TRIM69 inhibits cataractogenesis by negatively regulating p53. Redox Biology, 22, 101157. https://doi.org/10.1016/j.redox.2019.101157.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng, Y., Shi, Y., & Wen, C. (2022). TRIM3 inhibits H2O2-induced apoptosis in human lens epithelial cells by decreasing p53 via ubiquitination. Current Eye Research, 47(5), 747–752. https://doi.org/10.1080/02713683.2022.2040538.

Article  CAS  PubMed  Google Scholar 

Meng, K., & Fang, C. (2021). Knockdown of Tripartite motif-containing 22 (TRIM22)relieved the apoptosis of lens epithelial cells by suppressing the expression of TNF receptor-associated factor 6 (TRAF6). Bioengineered, 12(1), 7213–7222. https://doi.org/10.1080/21655979.2021.1980645.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, W., Wu, A., Zhang, G., Ding, X., Kang, L., Zhou, T., Ji, M., & Guan, H. (2023). Ubiquitination of Ku70 by Parkin promotes apoptosis of lens epithelial cells. The FEBS Journal, 290(15), 3828–3842. https://doi.org/10.1111/febs.16784.

Article  CAS  PubMed  Google Scholar 

Wu, A., Zhang, W., Zhang, G., Ding, X., Kang, L., Zhou, T., Ji, M., & Guan, H. (2023). Age-related cataract: GSTP1 ubiquitination and degradation by Parkin inhibits its anti-apoptosis in lens epithelial cells. Biochimica et Biophysica acta Molecular Cell Research, 1870(4), 119450. https://doi.org/10.1016/j.bbamcr.2023.119450.

Article  CAS  PubMed  Google Scholar 

Li, X., Sun, X., Li, L., Luo, Y., Chi, Y., & Zheng, G. (2022). MDM2-mediated ubiquitination of LKB1 contributes to the development of diabetic cataract. Experimental Cell Research, 417(1), 113191. https://doi.org/10.1016/j.yexcr.2022.113191.

Article  CAS  PubMed  Google Scholar 

Liu, K., Lyu, L., Chin, D., Gao, J., Sun, X., Shang, F., Caceres, A., Chang, M. L., Rowan, S., Peng, J., Mathias, R., Kasahara, H., Jiang, S., & Taylor, A. (2015). Altered ubiquitin causes perturbed calcium homeostasis, hyperactivation of calpain, dysregulated differentiation, and cataract. Proceedings of the National Academy of Sciences of the United States of America, 112(4), 1071–1076. https://doi.org/10.1073/pnas.1404059112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bao, X., Hou, M., Peng, R., Luo, F., & Wu, M. (2017). Expression of dominant negative K6W-ubiquitin in the lens epithelium via an adenoviral vector delays posterior capsule opacification in a rabbit model. Current Molecular medicine, 17(2), 160–168. https://doi.org/10.2174/1566524017666170331163751.

Article  CAS  PubMed  Google Scholar 

Gupta, N., & Yücel, Y. H. (2007). Glaucoma as a neurodegenerative disease. Current Opinion in Ophthalmology, 18(2), 110–114. https://doi.org/10.1097/ICU.0b013e3280895aea.

Article  PubMed  Google Scholar 

Quinn, P. M. J., Moreira, P. I., Ambrósio, A. F., & Alves, C. H. (2020). PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathologica Communications, 8(1), 189. https://doi.org/10.1186/s40478-020-01062-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai, Y., Hu, X., & Sun, X. (2018). Overexpression of parkin protects retinal ganglion cells in experimental glaucoma. Cell Death & Disease, 9(2), 88. https://doi.org/10.1038/s41419-017-0146-9.

Article  CAS  Google Scholar 

Weil, R., Laplantine, E., Curic, S., & Génin, P. (2018). Role of optineurin in the mitochondrial dysfunction: potential implications in neurodegenerative diseases and cancer. Frontiers in Immunology, 9, 1243. https://doi.org/10.3389/fimmu.2018.01243.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, L., Xu, L., Chen, W., Li, X., Xia, Q., Zheng, L., Duan, Q., Zhang, H., & Zhao, Y. (2018). Reduced annexin A1 secretion by ABCA1 causes retinal inflammation and ganglion cell apoptosis in a murine glaucoma model. Frontiers in Cellular Neuroscience, 12, 347. https://doi.org/10.3389/fncel.2018.00347.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gillespie, S. R., Tedesco, L. J., Wang, L., & Bernstein, A. M. (2017). The deubiquitylase USP10 regulates integrin β1 and β5 and fibrotic wound healing. Journal of Cell Science, 130(20), 3481–3495. https://doi.org/10.1242/jcs.204628.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif