Crucial Roles of RSAD2/viperin in Immunomodulation, Mitochondrial Metabolism and Autoimmune Diseases

Pisetsky, D.S. 2023. Pathogenesis of autoimmune disease. Nature Reviews Nephrology 19 (8): 509–524. https://doi.org/10.1038/s41581-023-00720-1.

Article  CAS  PubMed  Google Scholar 

Fugger, L., L.T. Jensen, and J. Rossjohn. 2020. Challenges, progress, and prospects of developing therapies to treat autoimmune diseases. Cell 181 (1): 63–80. https://doi.org/10.1016/j.cell.2020.03.007.

Article  CAS  PubMed  Google Scholar 

Seo, J.Y., R. Yaneva, and P. Cresswell. 2011. Viperin: A multifunctional, interferon-inducible protein that regulates virus replication. Cell Host & Microbe 10 (6): 534–539. https://doi.org/10.1016/j.chom.2011.11.004.

Article  CAS  Google Scholar 

Fang, Q., T. Li, P. Chen, Y. Wu, T. Wang, L. Mo, et al. 2021. Comparative analysis on abnormal methylome of differentially expressed genes and disease pathways in the immune cells of RA and SLE. Frontiers in Immunology 12: 668007. https://doi.org/10.3389/fimmu.2021.668007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng, X., J. Huang, Y. Liu, L. Xiao, D. Wang, B. Hua, et al. 2015. Identification of interferon-inducible genes as diagnostic biomarker for systemic lupus erythematosus. Clinical Rheumatology 34 (1): 71–79. https://doi.org/10.1007/s10067-014-2799-4.

Article  PubMed  Google Scholar 

Imgenberg-Kreuz, J., J.K. Sandling, K.B. Norheim, S.J.A. Johnsen, R. Omdal, A.C. Syvänen, et al. 2021. DNA Methylation-based interferon scores associate with sub-phenotypes in Primary Sjögren’s Syndrome. Frontiers in Immunology 12: 702037. https://doi.org/10.3389/fimmu.2021.702037.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saitoh, T., T. Satoh, N. Yamamoto, S. Uematsu, O. Takeuchi, T. Kawai, et al. 2011. Antiviral protein Viperin promotes Toll-like receptor 7- and Toll-like receptor 9-mediated type I interferon production in plasmacytoid dendritic cells. Immunity 34 (3): 352–363. https://doi.org/10.1016/j.immuni.2011.03.010.

Article  CAS  PubMed  Google Scholar 

Crosse, K.M., E.A. Monson, A.B. Dumbrepatil, M. Smith, Y.Y. Tseng, K.H. Van der Hoek, et al. 2021. Viperin binds STING and enhances the type-I interferon response following dsDNA detection. Immunology and Cell Biology 99 (4): 373–391. https://doi.org/10.1111/imcb.12420.

Article  CAS  PubMed  Google Scholar 

Crow, M.K., M. Olferiev, and K.A. Kirou. 2019. Type I interferons in Autoimmune Disease. Annual Review of Pathology 14: 369–393. https://doi.org/10.1146/annurev-pathol-020117-043952.

Article  CAS  PubMed  Google Scholar 

Khantisitthiporn, O., B. Shue, N.S. Eyre, C.W. Nash, L. Turnbull, C.B. Whitchurch, et al. 2021. Viperin interacts with PEX19 to mediate peroxisomal augmentation of the innate antiviral response. Life Science Alliance 4 (7). https://doi.org/10.26508/lsa.202000915.

Buskiewicz, I.A., T. Montgomery, E.C. Yasewicz, S.A. Huber, M.P. Murphy, R.C. Hartley, et al. 2016. Reactive oxygen species induce virus-independent MAVS oligomerization in systemic lupus erythematosus. Science Signaling 9 (456): ra115. https://doi.org/10.1126/scisignal.aaf1933.

Dumbrepatil, A.B., K.A. Zegalia, K. Sajja, R.T. Kennedy, and E.N.G. Marsh. 2020. Targeting viperin to the mitochondrion inhibits the thiolase activity of the trifunctional enzyme complex. Journal of Biological Chemistry 295 (9): 2839–2849. https://doi.org/10.1074/jbc.RA119.011526.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seo, J.Y., and P. Cresswell. 2013. Viperin regulates cellular lipid metabolism during human cytomegalovirus infection. PLoS Pathogens 9 (8): e1003497. https://doi.org/10.1371/journal.ppat.1003497.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rivera-Serrano, E.E., A.S. Gizzi, J.J. Arnold, T.L. Grove, S.C. Almo, and C.E. Cameron. 2020. Viperin reveals its true function. Annual Review of Virology 7 (1): 421–446. https://doi.org/10.1146/annurev-virology-011720-095930.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Upadhyay, A.S., K. Vonderstein, A. Pichlmair, O. Stehling, K.L. Bennett, G. Dobler, et al. 2014. Viperin is an iron-sulfur protein that inhibits genome synthesis of tick-borne encephalitis virus via radical SAM domain activity. Cellular Microbiology 16 (6): 834–848. https://doi.org/10.1111/cmi.12241.

Article  CAS  PubMed  Google Scholar 

Hinson, E.R., and P. Cresswell. 2009. The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic alpha-helix. Proceedings of the National Academy of Sciences of the United States of America. 106 (48): 20452–20457. https://doi.org/10.1073/pnas.0911679106.

Article  PubMed  PubMed Central  Google Scholar 

Hinson, E.R., and P. Cresswell. 2009. The N-terminal amphipathic alpha-helix of viperin mediates localization to the cytosolic face of the endoplasmic reticulum and inhibits protein secretion. Journal of Biological Chemistry 284 (7): 4705–4712. https://doi.org/10.1074/jbc.M807261200.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, X., E.R. Hinson, and P. Cresswell. 2007. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host & Microbe 2 (2): 96–105. https://doi.org/10.1016/j.chom.2007.06.009.

Article  CAS  Google Scholar 

Krebs, C., W.E. Broderick, T.F. Henshaw, J.B. Broderick, and B.H. Huynh. 2002. Coordination of adenosylmethionine to a unique iron site of the [4Fe-4S] of pyruvate formate-lyase activating enzyme: A Mössbauer spectroscopic study. Journal of the American Chemical Society 124 (6): 912–913. https://doi.org/10.1021/ja017562i.

Article  CAS  PubMed  Google Scholar 

Broderick, W.E., B.M. Hoffman, and J.B. Broderick. 2018. Mechanism of radical initiation in the radical S-Adenosyl-l-methionine superfamily. Accounts of Chemical Research. 51 (11): 2611–2619. https://doi.org/10.1021/acs.accounts.8b00356.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gizzi, A.S., T.L. Grove, J.J. Arnold, J. Jose, R.K. Jangra, S.J. Garforth, et al. 2018. A naturally occurring antiviral ribonucleotide encoded by the human genome. Nature 558 (7711): 610–614. https://doi.org/10.1038/s41586-018-0238-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wein, T., and R. Sorek. 2022. Bacterial origins of human cell-autonomous innate immune mechanisms. Nature Reviews Immunology. 22 (10): 629–638. https://doi.org/10.1038/s41577-022-00705-4.

Article  CAS  PubMed  Google Scholar 

Helbig, K.J., J.M. Carr, J.K. Calvert, S. Wati, J.N. Clarke, N.S. Eyre, et al. 2013. Viperin is induced following dengue virus type-2 (DENV-2) infection and has anti-viral actions requiring the C-terminal end of viperin. PLoS Neglected Tropical Diseases 7 (4): e2178. https://doi.org/10.1371/journal.pntd.0002178.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vanwalscappel, B., G. Gadea, and P. Desprès. 2019. A Viperin Mutant Bearing the K358R Substitution Lost its Anti-ZIKA Virus Activity. International Journal of Molecular Sciences. 20 (7). https://doi.org/10.3390/ijms20071574.

Subramaniam, P.S., B.A. Torres, and H.M. Johnson. 2001. So many ligands, so few transcription factors: A new paradigm for signaling through the STAT transcription factors. Cytokine 15 (4): 175–187. https://doi.org/10.1006/cyto.2001.0905.

Article  CAS  PubMed  Google Scholar 

Bach, E.A., M. Aguet, and R.D. Schreiber. 1997. The IFN gamma receptor: A paradigm for cytokine receptor signaling. Annual Review of Immunology 15: 563–591. https://doi.org/10.1146/annurev.immunol.15.1.563.

Article  CAS  PubMed  Google Scholar 

Pervolaraki, K., S. Rastgou Talemi, D. Albrecht, F. Bormann, C. Bamford, J.L. Mendoza, et al. 2018. Differential induction of interferon stimulated genes between type I and type III interferons is independent of interferon receptor abundance. PLoS Pathogens. 14 (11): e1007420. https://doi.org/10.1371/journal.ppat.1007420.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, Z., O.J. Hamming, N. Ank, S.R. Paludan, A.L. Nielsen, and R. Hartmann. 2007. Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases. Journal of Virology 81 (14): 7749–7758. https://doi.org/10.1128/jvi.02438-06.

Article  CAS 

留言 (0)

沒有登入
gif