Alterations in metabolites in the anterior cingulate cortex and thalamus and their associations with pain and empathy in patients with chronic mild pain: a preliminary study

Apkarian AV, Bushnell MC, Treede RD, Zubieta JK (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9(4):463–484. https://doi.org/10.1016/j.ejpain.2004.11.001

Article  PubMed  Google Scholar 

Apkarian AV, Hashmi JA, Baliki MN (2012) Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. Pain 152(3 suppl):S49–S64. https://doi.org/10.1016/j.pain.2010.11.010

Article  Google Scholar 

Archibald J, MacMillan EL, Graf C, Kozlowski P, Laule C, Kramer JLK (2020) Metabolite activity in the anterior cingulate cortex during a painful stimulus using functional MRS. Sci Rep 10:19218. https://doi.org/10.1038/s41598-020-76263-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440. https://doi.org/10.1016/j.neuron.2008.10.013

Article  CAS  PubMed  Google Scholar 

Baumbach P, Meiβner W, Reichenbach JR, Gussew A (2022) Functional connectivity and neurotransmitter impairments of the salience brain network in chronic low back pain patients: a combined resting-state functional magnetic resonance imaging and 1H-MRS study. Pain 163(12):2337–2347. https://doi.org/10.1097/j.pain.0000000000002626

Article  PubMed  Google Scholar 

Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh JK (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571. https://doi.org/10.1097/j.pain.0000000000002626

Article  CAS  PubMed  Google Scholar 

Bernhardt BC, Singer T (2012) The neural basis of empathy. Annu Rev Neurosci 35:1–23. https://doi.org/10.1097/j.pain.0000000000002626

Article  CAS  PubMed  Google Scholar 

Bliss TV, Collingridge GL, Kaang BK, Zhuo M (2016) Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat Rev Neurosci 17:485–496. https://doi.org/10.1097/j.pain.0000000000002626

Article  CAS  PubMed  Google Scholar 

Davis MH (1983) Measuring individual differences in empathy: evidence for a multidimensional approach. J Pers Soc Psychol 44:113–126. https://doi.org/10.1037/0022-3514.44.1.113

Article  Google Scholar 

de Kruijf M, Bos D, Huygen FJ, Niessen WJ, Tiemeier H, Hofman A, Uitterlinden AG, Vernooij MW, Ikram MA, van Meurs JB (2016) Structural brain alterations in community dwelling individuals with chronic joint pain. Am J Neuroradiol 37:430–438. https://doi.org/10.3174/ajnr.A4556

Article  PubMed  PubMed Central  Google Scholar 

Delgado DA, Lambert BS, Boutris N, McCulloch PC, Robbins AB, Moreno MR, Harris JD (2018) Validation of digital visual analog scale pain scoring with a traditional paper-based visual analog scale in adults. J Am Acad Ortho Surg Glob Res Rev 2:e088. https://doi.org/10.1097/j.pain.0000000000002626

Article  Google Scholar 

Eres R, Decety J, Louis WR, Molenberghs P (2015) Individual differences in local grey matter density are associated with differences in affective and cognitive empathy. NeuroImage 117:305–310. https://doi.org/10.1016/j.neuroimage.2015.05.038

Article  PubMed  Google Scholar 

Fan J, McCandliss BD, Fossella JI, Fiombanm JI, Posner MI (2005) The activation of attentional networks. NeuroImage 26:471–479. https://doi.org/10.1016/j.neuroimage.2005.02.004

Article  PubMed  Google Scholar 

Fan Y, Duncan NW, de Greck M, Northoff G (2011) Is there a core neural network in empathy? An fMRI based quantitative meta-analysis. Neurosci Biobehav Rev 35:903–911. https://doi.org/10.1016/j.neubiorev.2010.10.009

Article  PubMed  Google Scholar 

Farmer MA, Baliki MN, Apkarian AV (2012) A dynamic network perspective of chronic pain. Neurosci Lett 520:197–203. https://doi.org/10.1016/j.neulet.2012.05.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feraco P, Bacci A, Pedrabissi F, Passamonti L, Zampogna G, Pedrabissi F, Malavolta N, Leonardi M (2011) Metabolic abnormalities in pain-processing regions of patients with fibromyalgia: a 3T MR Spectroscopy study. AJNR Am J Neuroradiol 32:1585–1590. https://doi.org/10.3174/ajnr.A2550

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fukui S, Matsuno M, Inubushi T, Nosaka S (2006) N-Acetylaspartate concentrations in the thalami of neuropathic pain patients and healthy comparison subjects measured with 1H-MRS. Magn Reson Imaging 24:75–79. https://doi.org/10.1016/j.mri.2005.10.021

Article  CAS  PubMed  Google Scholar 

Gussew A, Rzanny R, Güllmar D, Scholle HC, Reichenbach JR (2011) ) 1H-MR spectroscopic detection of metabolic changes in pain processing brain regions in the presence of non-specific chronic low back pain. Nueuroimage 54:1315–1323. https://doi.org/10.1016/j.neuroimage.2010.09.039

Article  Google Scholar 

Gustin SM, Wrigley PJ, Youssef AM, McIndoe I, Wilcox SL, Rae CD, Edden RAE, Siddall PJ, Henderson LA (2014) Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury. Pain 155:1027–1036. https://doi.org/10.1016/j.pain.2014.02.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hasegawa M, Mishima M, Katsumoto I, Sasaki T, Kimura T, Baba Y, Senami K, Kanemura K, Takano O, Shibata T (2001) Confirming the theoretical structure of the Japanese version of the McGill Pain Questionnaire in chronic pain. Pain Med 2:52–59. https://doi.org/10.1046/j.1526-4637.2001.002001052.x

Article  CAS  PubMed  Google Scholar 

Ito T, Tanaka-Mizuno S, Iwashita N, Tooyama I, Shiino A, Miura K, Fukui S (2017) Proton magnetic resonance spectroscopy assessment of metabolite status of the anterior cingulate cortex in chronic pain patients and healthy controls. J Pain Res 10:287–293. https://doi.org/10.2147/JPR.S123403

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kameda T, Fukui S, Tominaga R, Sekiguchi M, Iwashita N, Ito K, Tanaka-Mizuno S, Konno S (2018) Brain metabolite changes in the anterior cingulate cortex of chronic low back pain patients and correlations between metabolites and psychological state. Clin J Pain 34(7):657–663. https://doi.org/10.1097/AJP.0000000000000583

Article  PubMed  Google Scholar 

Kim H, McGrath BM, Silverstone PH (2005) A review of the possible relevance of inositol and the phosphatidylinositol second messenger system (PI-cycle) to psychiatric disorders - focus on magnetic resonance spectroscopy (MRS) studies. Hum Psychopharmacol 20:309–326. https://doi.org/10.1002/hup.693

Article  CAS  PubMed  Google Scholar 

Lee SH, Choi BY, Kim JH, Kho AR, Sohn M, Song HK, Choi HC, Suh SW (2017) Late treatment with choline alfoscerate (L-alpha glycerylphosphorylcholine, α-GPC) increases hippocampal neurogenesis and provides protection against seizure-induced neuronal death and cognitive impairment. Brain Res 1654:66–76. https://doi.org/10.1016/j.brainres.2016.10.011

Article  CAS  PubMed  Google Scholar 

Legarreta MD, Sheth C, Prescot AP, Renshaw PF, McGlade EC, Yurgelun-Todd DA (2021) An exploratory proton MRS examination of gamma-aminobutyric acid, glutamate, and glutamine and their relationship to affective aspects of chronic pain. Neurosci Res 163:10–17. https://doi.org/10.1016/j.neures.2020.03.00

Article  CAS  PubMed  Google Scholar 

Lowe NK, Walker SN, MacCallum RC (1991) Confirming the theoretical structure of the McGill Pain Questionnaire in acute clinical pain. Pain 46:53–60. https://doi.org/10.1016/0304-3959(91)90033-T

Article  PubMed  Google Scholar 

Maruo T, Nakae A, Maeda L, Takahashi-Narita K, Morris S, Yokoe M, Matsuzaki T, Shibata M, Saitoh Y (2013) Translation and reliability and validity of a Japanese version of the revised short-form McGill Pain Questionnaire (SF-MPQ-2). Pain Res 28:43–53

Article  Google Scholar 

Melzack R (1987) The short-form McGill Pain Questionnaire. Pain 3:191–197. https://doi.org/10.1016/0304-3959(87)91074-8

Article  Google Scholar 

Nacewicz BM, Angelo L, Dalton KM, Fischer R, Anderle MJ, Alexander AL, Davidson RJ (2012) Reliable non-invasive measurement of human neurochemistry using proton spectroscopy with an anatomically defined amygdala-specific voxel. NeuroImage 59:2548–2559. https://doi.org/10.1016/j.neuroimage.2011.08.090

留言 (0)

沒有登入
gif