Effects of association between resveratrol and ketamine on behavioral and biochemical analysis in mice

Ahmad SF, Ansari MA, Nadeem A et al (2018) Resveratrol attenuates pro-inflammatory cytokines and activation of JAK1-STAT3 in BTBR T + Itpr3tf/J autistic mice. Eur J Pharmacol 829:70–78. https://doi.org/10.1016/J.EJPHAR.2018.04.008

Article  CAS  PubMed  Google Scholar 

Bastianetto S, Ménard C, Quirion R (2015) Neuroprotective action of resveratrol. Biochim Biophys Acta 1852:1195–1201. https://doi.org/10.1016/J.BBADIS.2014.09.011

Article  CAS  PubMed  Google Scholar 

Ben-Azu B, Aderibigbe AO, Ajayi AM et al (2018) Involvement of GABAergic, BDNF and Nox-2 mechanisms in the prevention and reversal of ketamine-induced schizophrenia-like behavior by morin in mice. Brain Res Bull 139:292–306. https://doi.org/10.1016/J.BRAINRESBULL.2018.03.006

Article  CAS  PubMed  Google Scholar 

Ben-Azu B, Adebayo OG, Jarikre TA et al (2022) Taurine, an essential β-amino acid insulates against ketamine-induced experimental psychosis by enhancement of cholinergic neurotransmission, inhibition of oxidative/nitrergic imbalances, and suppression of COX-2/iNOS immunoreactions in mice. Metabolic Brain Disease 2022 37:8. https://doi.org/10.1007/S11011-022-01075-5

Article  Google Scholar 

Ben-Azu B, Uruaka CI, Ajayi AM et al (2023a) Reversal and preventive pleiotropic mechanisms involved in the antipsychotic-like Effect of Taurine, an essential β-Amino acid in ketamine-Induced Experimental Schizophrenia in mice. Neurochem Res 48:816–829. https://doi.org/10.1007/S11064-022-03808-5/METRICS

Article  CAS  PubMed  Google Scholar 

Ben-Azu B, Uruaka CI, Ajayi AM et al (2023b) Reversal and preventive pleiotropic mechanisms involved in the antipsychotic-like Effect of Taurine, an essential β-Amino acid in ketamine-Induced Experimental Schizophrenia in mice. Neurochem Res 48:816–829. https://doi.org/10.1007/S11064-022-03808-5/FIGURES/7

Article  CAS  PubMed  Google Scholar 

Borovcanin MM, Jovanovic I, Radosavljevic G et al (2017) Interleukin-6 in schizophrenia-Is there a therapeutic relevance? Front Psychiatry 8:306005. https://doi.org/10.3389/FPSYT.2017.00221/BIBTEX

Article  Google Scholar 

Busanello A, Barbosa NBV, Peroza LR et al (2011) Resveratrol protects against a model of vacuous chewing movements induced by reserpine in mice. Behav Pharmacol 22:71–75. https://doi.org/10.1097/fbp.0b013e328341e9b4

Article  CAS  PubMed  Google Scholar 

Busanello A, Peroza LR, Wagner C et al (2012) Resveratrol reduces vacuous chewing movements induced by acute treatment with fluphenazine. Pharmacol Biochem Behav 101:307–310. https://doi.org/10.1016/J.PBB.2012.01.007

Article  CAS  PubMed  Google Scholar 

Busanello A, Leal CQ, Peroza LR et al (2017) Resveratrol protects against vacuous chewing movements induced by chronic treatment with Fluphenazine. Neurochem Res 42:3033–3040. https://doi.org/10.1007/s11064-017-2335-4

Calleri E, Pochetti G, Dossou KSS et al (2014) Resveratrol and its metabolites bind to PPARs. ChemBioChem 15:1154–1160. https://doi.org/10.1002/CBIC.201300754

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carradori S, Fantacuzzi M, Ammazzalorso A et al (2022) Resveratrol analogues as dual inhibitors of Monoamine Oxidase B and Carbonic anhydrase VII: a New Multi-target Combination for neurodegenerative diseases? Molecules 27:7816. https://doi.org/10.3390/MOLECULES27227816/S1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ceretta APC, Schaffer LF, de Freitas CM et al (2016) Gabapentin prevents behavioral changes on the amphetamine-induced animal model of schizophrenia. Schizophr Res 175:230–231. https://doi.org/10.1016/J.SCHRES.2016.04.044

Article  PubMed  Google Scholar 

Ceretta APC, de Freitas CM, Schaffer LF et al (2018) Gabapentin reduces haloperidol-induced vacuous chewing movements in mice. Pharmacol Biochem Behav 166:21–26. https://doi.org/10.1016/J.PBB.2018.01.003

Article  CAS  PubMed  Google Scholar 

Chamoli M, Chinta SJ, Andersen JK (2018) An inducible MAO-B mouse model of Parkinson’s disease: a tool towards better understanding basic disease mechanisms and developing novel therapeutics. J Neural Transm 125:1651–1658. https://doi.org/10.1007/s00702-018-1887-z

Article  PubMed  Google Scholar 

Chatterjee M, Jaiswal M, Palit G (2012) Comparative evaluation of forced swim test and tail suspension test as models of negative Symptom of Schizophrenia in rodents. ISRN Psychiatry 2012:1–5. https://doi.org/10.5402/2012/595141

Article  Google Scholar 

Cheng WJ, Chen CH, Chen CK et al (2018) Similar psychotic and cognitive profile between ketamine dependence with persistent psychosis and schizophrenia. Schizophr Res 199:313–318. https://doi.org/10.1016/J.SCHRES.2018.02.049

Article  PubMed  Google Scholar 

Corpas R, Griñán-Ferré C, Rodríguez-Farré E et al (2018) Resveratrol Induces Brain Resilience Against Alzheimer Neurodegeneration Through Proteostasis Enhancement. Molecular Neurobiology 2018 56:2 56:1502–1516. https://doi.org/10.1007/S12035-018-1157-Y

De Oliveira MR, Nabavi SF, Manayi A et al (2016) Resveratrol and the mitochondria: from triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochimica et Biophysica Acta (BBA). - Gen Subj 1860:727–745. https://doi.org/10.1016/J.BBAGEN.2016.01.017

Article  Google Scholar 

Denninger JK, Smith BM, Kirby ED (2018) Novel Object Recognition and Object Location Behavioral Testing in Mice on a Budget. JoVE (Journal of Visualized Experiments) 2018:e58593. https://doi.org/10.3791/58593

Di Liberto V, Mäkelä J, Korhonen L et al (2012) Involvement of estrogen receptors in the resveratrol-mediated increase in dopamine transporter in human dopaminergic neurons and in striatum of female mice. Neuropharmacology 62:1011–1018. https://doi.org/10.1016/J.NEUROPHARM.2011.10.010

Article  PubMed  Google Scholar 

Enayati A, Ghojoghnejad M, Roufogalis BD et al (2022) Impact of Phytochemicals on PPAR Receptors: Implications for Disease Treatments. PPAR Res 2022:. https://doi.org/10.1155/2022/4714914

Eneni AEO, Ben-Azu B, Ajayi AM, Aderibibge AO (2023) Lipopolysaccharide exacerbates ketamine-Induced psychotic-like Behavior, oxidative stress, and Neuroinflammation in mice: ameliorative effect of Diosmin. J Mol Neurosci 73:129–142. https://doi.org/10.1007/S12031-022-02077-9/FIGURES/3

Fachinetto R, Villarinho JG, Wagner C et al (2007) Valeriana officinalis does not alter the orofacial dyskinesia induced by haloperidol in rats: role of dopamine transporter. Prog Neuropsychopharmacol Biol Psychiatry 31:1478–1486. https://doi.org/10.1016/J.PNPBP.2007.06.028

Article  CAS  PubMed  Google Scholar 

Fantacuzzi M, Amoroso R, Carradori S, De Filippis B (2022) Resveratrol-based compounds and neurodegeneration: recent insight in multitarget therapy. Eur J Med Chem 233:114242. https://doi.org/10.1016/J.EJMECH.2022.114242

Article  CAS  PubMed  Google Scholar 

Farkhakfar A, Hassanpour S, Zendehdel M (2023) Resveratrol plays neuroprotective role on ketamine-induced schizophrenia-like behaviors and oxidative damage in mice. Neurosci Lett 813:137436. https://doi.org/10.1016/J.NEULET.2023.137436

Article  CAS  PubMed  Google Scholar 

Figueira FH, Leal CQ, de Moraes Reis E et al (2015) Effects of diphenyl diselenide on behavioral and biochemical changes induced by amphetamine in mice. J Neural Transm 122:201–209. https://doi.org/10.1007/S00702-014-1257-4/TABLES/2

Article  CAS  PubMed  Google Scholar 

Finberg JPM (2014) Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release. Pharmacol Ther 143:133–152. https://doi.org/10.1016/j.pharmthera.2014.02.010

Article  CAS  PubMed  Google Scholar 

Finberg JPM, Rabey JM (2016) Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front Pharmacol 7. https://doi.org/10.3389/FPHAR.2016.00340

Frohlich J, Van Horn JD (2013) Reviewing the ketamine model for schizophrenia. https://doi.org/10.1177/0269881113512909 28:287–302.

Hann Yih T, Abd Ghapor AA, Agarwal R et al (2022) Effect of trans-resveratrol on glutamate clearance and visual behaviour in rats with glutamate induced retinal injury. Exp Eye Res 220:109104. https://doi.org/10.1016/J.EXER.2022.109104

Article  CAS  PubMed  Google Scholar 

Hsieh CP, Chang WT, Chen L et al (2021) Differential inhibitory effects of resveratrol on excitotoxicity and synaptic plasticity: involvement of NMDA receptor subtypes. Nutr Neurosci 24:443–458. https://doi.org/10.1080/1028415X.2019.1641995

Article  CAS  PubMed  Google Scholar 

Iqbal SZ, Mathew SJ (2020) Ketamine for depression clinical issues. Adv Pharmacol 89:131–162. https://doi.org/10.1016/BS.APHA.2020.02.005

Article  CAS  PubMed  Google Scholar 

Jin F, Wu Q, Lu YF et al (2008) Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. Eur J Pharmacol 600:78–82. https://doi.org/10.1016/J.EJPHAR.2008.10.005

Article 

留言 (0)

沒有登入
gif