Theoretical and Experimental Study of the Interaction of Protonophore Uncouplers and Decoupling Agents with Functionally Active Mitochondria

Mitchell, P. (2011). Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. 1966. Biochimica et Biophysica Acta, 1807, 1507–1538. https://doi.org/10.1016/j.bbabio.2011.09.018.

Article  CAS  PubMed  Google Scholar 

Brand, M. D., & Nicholls, D. G. (2011). Assessing mitochondrial dysfunction in cells. Biochemical Journal, 435(2), 297–312. https://doi.org/10.1042/BJ20110162.

Article  CAS  PubMed  Google Scholar 

Skulachev, V. P., Bogachev, A. V., & Kasparinsky, F. O. (2013). Principles of Bioenergetics. Berlin: Springer-Verlag.

Book  Google Scholar 

Skulachev, V. P., Vyssokikh, M. Y., Chernyak, B. V., Mulkidjanian, A. Y., Skulachev, M. V., & Shilovsky, G. A., et al. (2023). Six functions of respiration: Isn’t it time to take control over ROS production in mitochondria, and aging along with it? International Journal of Molecular Sciences, 24(16), 12540 https://doi.org/10.3390/ijms241612540.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Terada, H. (1990). Uncouplers of oxidative phosphorylation. Environmental Health Perspectives, 87, 213–218. https://doi.org/10.1289/ehp.9087213.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Skulachev, V. P. (1998). Uncoupling: new approaches to an old problem of bioenergetics. Biochimica et Biophysica Acta, 1363, 100–124. https://doi.org/10.1016/s0005-2728(97)00091-1.

Article  CAS  PubMed  Google Scholar 

Kadenbach, B. (2003). Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochimica et Biophysica Acta, 1604(2), 77–94. https://doi.org/10.1016/s0005-2728(03)00027-6.

Article  CAS  PubMed  Google Scholar 

Goedeke, L., & Shulman, G. I. (2021). Therapeutic potential of mitochondrial uncouplers for the treatment of metabolic associated fatty liver disease and NASH. Molecular Metabolism, 46, 101178 https://doi.org/10.1016/j.molmet.2021.101178.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shrestha, R., Johnson, E., & Byrne, F. L. (2021). Exploring the therapeutic potential of mitochondrial uncouplers in cancer. Molecular Metabolism, 46, 101222 https://doi.org/10.1016/j.molmet.2021.101222.

Article  CAS  Google Scholar 

Kotova, E. A., & Antonenko, Y. N. (2022). Fifty years of research on protonophores: Mitochondrial uncoupling as a basis for therapeutic action. Acta Naturae, 14(1), 4–13. https://doi.org/10.32607/actanaturae.11610.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andreyev, A. Y. U., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., & Tsofina, L. M., et al. (1989). The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids on mitochondria. European Journal of Biochemistry, 182, 585–592. https://doi.org/10.1111/j.1432-1033.1989.tb14867.x.

Article  Google Scholar 

Žuna, K., Jovanović, O., Khailova, L. S., Škulj, S., Brkljaca, Z., & Kreiter, J., et al. (2021). Mitochondrial uncoupling proteins (UCP1-UCP3) and adenine nucleotide translocase (ANT1) enhance the protonophoric action of 2,4-dinitrophenol in mitochondria and planar bilayer membranes. Biomolecules, 11, 1178 https://doi.org/10.3390/biom11081178.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bertholet, A. M., Natale, A. M., Bisignano, P., Suzuki, J., Fedorenko, A., & Hamilton, J., et al. (2022). Mitochondrial uncouplers induce proton leak by activating AAC and UCP1. Nature, 606(7912), 180–187. https://doi.org/10.1038/s41586-022-04747-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Samartsev, V. N., Semenova, A. A., & Dubinin, M. V. (2020). A comparative study of the action of protonophore uncouplers and decoupling agents as inducers of free respiration in mitochondria in states 3 and 4: Theoretical and experimental approaches. Cell Biochemistry and Biophysics, 78, 203–216. https://doi.org/10.1007/s12013-020-00914-5.

Article  CAS  PubMed  Google Scholar 

Iaubasarova, I. R., Khailova, L. S., Firsov, A. M., Grivennikova, V. G., Kirsanov, R. S., & Korshunova, G. A., et al. (2020). The mitochondria-targeted derivative of the classical uncoupler of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone is an effective mitochondrial recoupler. PLoS ONE, 15(12), e0244499 https://doi.org/10.1371/journal.pone.0244499.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cadenas, S. (2018). Mitochondrial uncoupling, ROS generation and cardioprotection. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1859, 940–950. https://doi.org/10.1016/j.bbabio.2018.05.019.

Article  CAS  PubMed  Google Scholar 

Zorov, D. B., Andrianova, N. V., Babenko, V. A., Pevzner, I. B., Popkov, V. A., & Zorov, S. D., et al. (2021). Neuroprotective potential of mild uncoupling in mitochondria. Pros and cons. Brain Sciences, 11(8), 1050 https://doi.org/10.3390/brainsci11081050.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kauerová, T., Pérez-Pérez, M. J., & Kollar, P. (2023). Salicylanilides and their anticancer properties. International Journal of Molecular Sciences, 24(2), 1728. https://doi.org/10.3390/ijms24021728.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schönfeld, P. (1990). Does the function of adenine nucleotide translocase in fatty acid uncoupling depend on the type mitochondria? FEBS Letters, 264, 246–248. https://doi.org/10.1016/0014-5793(90)80259-l.

Article  PubMed  Google Scholar 

Samartsev, V. N., Smirnov, A. V., Zeldi, I. P., Markova, O. V., Mokhova, E. N., & Skulachev, V. P. (1997). Involved of aspartate/glutamate antiporter in fatty acid-induced uncoupling of liver mitochondria. Biochimica et Biophysica Acta, 1339, 251–257. https://doi.org/10.1016/s0005-2728(96)00166-1.

Article  Google Scholar 

Price, B. D., & Brand, M. D. (1982). Proton translocation by the mitochondrial cytochrome b-c1 complex is inhibited by NN’-dicyclohexylcarbodi-imide. Biochemical Journal, 206, 419–421. https://doi.org/10.1042/bj2060419.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Terada, H., Shima, O., Yoshida, K., & Shinohara, Y. (1990). Effects of the local anesthetic bupivacaine on oxidative phosphorilation in mitochondria. Change from decoupling to uncoupling by formation of a leakage type ion pathway specific for H+ in cooperation with hydrophobic anions. Journal of Biological Chemistry, 265, 7837–7842.

Article  CAS  PubMed  Google Scholar 

Rottenberg, H. (1990). Decoupling of oxidative phosphorylation and photophosphorylation. Biochimica et Biophysica Acta, 1018, 1–17. https://doi.org/10.1016/0005-2728(90)90103-b.

Article  CAS  PubMed  Google Scholar 

Chien, L. F., & Brand, M. D. (1996). The effect of chloroform on mitochondrial energy transduction. Biochemical Journal, 320, 837–845. https://doi.org/10.1042/bj3200837.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Samartsev, V. N., Semenova, A. A., Ivanov, A. N., & Dubinin, M. V. (2022). Comparative study of free respiration in liver mitochondria during oxidation of various electron donors and under conditions of shutdown of complex III of the respiratory chain. Biochemical and Biophysical Research Communications, 606, 163–167. https://doi.org/10.1016/j.bbrc.2022.03.099.

Article  CAS  PubMed  Google Scholar 

Semenova, A. A., Samartsev, V. N., & Dubinin, M. V. (2021). The stimulation of succinate-fueled respiration of rat liver mitochondria in state 4 by α,ω-hexadecanedioic acid without induction of proton conductivity of the inner membrane. Intrinsic uncoupling of the bc1 complex. Biochimie, 181, 215–225. https://doi.org/10.1016/j.biochi.2020.12.021.

Article  CAS  PubMed  Google Scholar 

Miyoshi, H., Nishioka, T., & Fujita, T. (1987). Quantitative relationship between protonophoric and uncoupling activities of substituted phenols. Biochimica et Biophysica Acta, 891(2), 194–204. https://doi.org/10.1016/0005-2728(87)90011-9.

留言 (0)

沒有登入
gif