The anti-inflammatory properties of vinpocetine mediates its therapeutic potential in management of atherosclerosis

Ferreira M-JU. Natural products in drug discovery and human health. Phytochem Rev. 2021;20(1):1–4.

Article  CAS  Google Scholar 

Al-Kuraishy HM, Al-Gareeb AI, Naji MT, Al-Mamorry F. Role of vinpocetine in ischemic stroke and poststroke outcomes: a critical review. Brain Circulation. 2020;6(1):1.

Article  PubMed  PubMed Central  Google Scholar 

Al-Kuraishy HM, Al-Gareeb AI, Fageyinbo MS, Batiha GE-S. Vinpocetine is the forthcoming adjuvant agent in the management of COVID-19. Future Sci OA. 2022(0):FSO797.

Al-kuraishy HM, Al-Gareeb AI. Vinpocetine and ischemic stroke. Ischemic Stroke. 2020;27.

Al-Kuraishy HM, Al-Gareeb AI, Al-Nami MS. Vinpocetine improves oxidative stress and pro-inflammatory mediators in acute kidney injury. Int J Prev Med. 2019;10.

Zhang Y-s, Li J-d, Yan C. An update on vinpocetine: new discoveries and clinical implications. Eur J Pharmacol. 2018;819:30–4.

Article  CAS  PubMed  Google Scholar 

Zhang L, Yang L. Anti-inflammatory effects of vinpocetine in atherosclerosis and ischemic stroke: a review of the literature. Molecules. 2014;20(1):335–47.

Article  PubMed  PubMed Central  Google Scholar 

Bönöczk P, Gulyás B, Adam-Vizi V, Nemes A, Kárpáti E, Kiss B, et al. Role of sodium channel inhibition in neuroprotection: effect of vinpocetine. Brain Res Bull. 2000;53(3):245–54.

Article  PubMed  Google Scholar 

Ansari MA, Iqubal A, Ekbbal R, Haque SE. Effects of Nimodipine, vinpocetine and their combination on isoproterenol-induced myocardial infarction in rats. Biomed Pharmacother. 2019;109:1372–80.

Article  CAS  PubMed  Google Scholar 

Wu M-p, Zhang Y, Xu X, Zhou Q, Li J-D, Yan C. Vinpocetine attenuates pathological cardiac remodeling by inhibiting Cardiac Hypertrophy and Fibrosis. Cardiovasc Drugs Ther. 2017;31.

Medina AE. Vinpocetine as a potent antiinflammatory agent. Proceedings of the National Academy of Sciences. 2010;107(22):9921-2.

Ping Z, Xiaomu W, Xufang X, Liang S. Vinpocetine regulates levels of circulating TLRs in Parkinson’s disease patients. Neurol Sci. 2019;40(1):113–20.

Article  PubMed  Google Scholar 

Libby P. The changing landscape of atherosclerosis. Nature. 2021;592(7855):524–33.

Article  CAS  PubMed  Google Scholar 

Fok P-W, Lanzer P. Media sclerosis drives and localizes atherosclerosis in peripheral arteries. PLoS ONE. 2018;13(10):e0205599.

Article  PubMed  PubMed Central  Google Scholar 

Schipper HS, de Ferranti S. Atherosclerotic cardiovascular risk as an emerging priority in pediatrics. Pediatrics. 2022;150(5).

Vergallo R, Crea F. Atherosclerotic plaque healing. N Engl J Med. 2020;383(9):846–57.

Article  CAS  PubMed  Google Scholar 

Shi P, Ji H, Zhang H, Yang J, Guo R, Wang J. circANRIL reduces vascular endothelial injury, oxidative stress and inflammation in rats with coronary atherosclerosis. Experimental Therapeutic Med. 2020;20(3):2245–51.

CAS  Google Scholar 

Rasheed A, Shawky SA, Tsai R, Jung RG, Simard T, Saikali MF, et al. The secretome of liver X receptor agonist-treated early outgrowth cells decreases atherosclerosis in Ldlr-/- mice. Stem Cells Transl Med. 2021;10(3):479–91.

Article  CAS  PubMed  Google Scholar 

Al-Maiahy T, Al-Gareeb A, Al-Kuraishy H. Role of dyslipidemia in the development of early-onset preeclampsia. J Adv Pharm Tech Res. 2021;12(1):73–8.

Article  Google Scholar 

Khatana C, Saini NK, Chakrabarti S, Saini V, Sharma A, Saini RV et al. Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxidative medicine and cellular longevity. 2020;2020.

Chiorescu RM, Mocan M, Inceu AI, Buda AP, Blendea D, Vlaicu SI. Vulnerable atherosclerotic plaque: is there a molecular signature? Int J Mol Sci. 2022;23(21):13638.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kadhim S, Al-Windy S, Al-Kuraishy H, Al-Gareeb A. Endothelin-1 is a surrogate biomarker link severe periodontitis and endothelial dysfunction in hypertensive patients: the potential nexus. J Int Oral Health. 2019;11(6):369–75.

Article  Google Scholar 

Al-kuraishy HM, Hussien NR, Al-Niemi MS, Fahad EH, Al-Buhadily AK, Al-Gareeb AI, et al. SARS-CoV-2 induced HDL dysfunction may affect the host’s response to and recovery from COVID-19. Immun Inflamm Dis. 2023;11(5):e861.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-kuraishy H. Fenofibrate and Crataegus oxyacantha is an Effectual Combo for Mixed Dyslipidemia2020.

Gill PK, Dron JS, Hegele RA. Genetics of hypertriglyceridemia and atherosclerosis. Curr Opin Cardiol. 2021;36(3):264–71.

Article  PubMed  Google Scholar 

Jinnouchi H, Guo L, Sakamoto A, Torii S, Sato Y, Cornelissen A, et al. Diversity of macrophage phenotypes and responses in atherosclerosis. Cell Mol Life Sci. 2020;77(10):1919–32.

Article  CAS  PubMed  Google Scholar 

Poznyak AV, Grechko AV, Orekhova VA, Chegodaev YS, Wu W-K, Orekhov AN. Oxidative stress and antioxidants in atherosclerosis development and treatment. Biology. 2020;9(3):60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee YW, Kim PH, Lee WH, Hirani AA. Interleukin-4, oxidative stress, vascular inflammation and atherosclerosis. Biomol Ther (Seoul). 2010;18(2):135–44.

Article  CAS  PubMed  Google Scholar 

Ho F, Watson A, Elbatreek MH, Kleikers PW, Khan W, Sourris KC, et al. Endothelial reactive oxygen-forming NADPH oxidase 5 is a possible player in diabetic aortic aneurysm but not atherosclerosis. Sci Rep. 2022;12(1):1–10.

Article  Google Scholar 

Wang C, Wang H, Zhao Z, Xiao S, Zhao Y, Duan C, et al. Pediococcus acidilactici AS185 attenuates early atherosclerosis development through inhibition of lipid regulation and inflammation in rats. J Funct Foods. 2019;60:103424.

Article  CAS  Google Scholar 

He D, Zhao M, Wu C, Zhang W, Niu C, Yu B, et al. Apolipoprotein A-1 mimetic peptide 4F promotes endothelial repairing and compromises reendothelialization impaired by oxidized HDL through SR-B1. Redox Biol. 2018;15:228–42.

Article  CAS  PubMed  Google Scholar 

Ou HC, Chou WC, Hung CH, Chu PM, Hsieh PL, Chan SH, et al. Galectin-3 aggravates ox‐LDL‐induced endothelial dysfunction through LOX‐1 mediated signaling pathway. Environ Toxicol. 2019;34(7):825–35.

Article  CAS  PubMed  Google Scholar 

Wu G, Zhu Q, Zeng J, Gu X, Miao Y, Xu W, et al. Extracellular mitochondrial DNA promote NLRP3 inflammasome activation and induce acute lung injury through TLR9 and NF-κB. J Thorac Disease. 2019;11(11):4816.

Article  Google Scholar 

Mallavia B, Recio C, Oguiza A, Ortiz-Muñoz G, Lazaro I, Lopez-Parra V, et al. Peptide inhibitor of NF-κB translocation ameliorates experimental atherosclerosis. Am J Pathol. 2013;182(5):1910–21.

Article  CAS  PubMed  Google Scholar 

Wang H, Zhang K, Zhao L, Tang J, Gao L, Wei Z. Anti-inflammatory effects of vinpocetine on the functional expression of nuclear factor-kappa B and tumor necrosis factor-alpha in a rat model of cerebral ischemia–reperfusion injury. Neurosci Lett. 2014;566:247–51.

Article  CAS  PubMed  Google Scholar 

Zhuang J, Peng W, Li H, Lu Y, Wang K, Fan F, et al. Inhibitory effects of vinpocetine on the progression of atherosclerosis are mediated by Akt/NF-κB dependent mechanisms in apoE-/-mice. PLoS ONE. 2013;8(12):e82509.

Article  PubMed  PubMed Central  Google Scholar 

Jeon KI, Xu X, Aizawa T, Lim JH, Jono H, Kwon DS, et al. Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism. Proc Natl Acad Sci U S A. 2010;107(21):9795–800.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tabata T, Mine S, Kawahara C, Okada Y, Tanaka Y. Monocyte chemoattractant protein-1 induces scavenger receptor expression and monocyte differentiation into foam cells. Biochem Biophys Res Commun. 2003;305(2):380–5.

Article  CAS  PubMed  Google Scholar 

Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets-Inflammation Allergy. 2005;4(3):281–6.

Article  C

留言 (0)

沒有登入
gif