Extracellular histones promote TWIK2-dependent potassium efflux and associated NLRP3 activation in alveolar macrophages during sepsis-induced lung injury

Beitler JR, Thompson BT, Baron RM, Bastarache JA, Denlinger LC, Esserman L, Gong MN, LaVange LM, Lewis RJ, Marshall JC, Martin TR, McAuley DF, Meyer NJ, Moss M, Reineck LA, Rubin E, Schmidt EP, Standiford TJ, Ware LB, Wong HR, Aggarwal NR, Calfee CS. Advancing precision medicine for acute respiratory distress syndrome. Lancet Respir Med. 2022;10(1):107–20. https://doi.org/10.1016/S2213-2600(21)00157-0.

Article  CAS  PubMed  Google Scholar 

Sheu CC, Gong MN, Zhai R, Chen F, Bajwa EK, Clardy PF, Gallagher DC, Thompson BT, Christiani DC. Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS. Chest. 2010;138(3):559–67. https://doi.org/10.1378/chest.09-2933.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu H, Sheng S, Luo W, Xu X, Zhang Z. Acute respiratory distress syndrome heterogeneity and the septic ARDS subgroup. Front Immunol. 2023;14:1277161. https://doi.org/10.3389/fimmu.2023.1277161.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cicchinelli S, Pignataro G, Gemma S, Piccioni A, Picozzi D, Ojetti V, Franceschi F, Candelli M. PAMPs and DAMPs in sepsis: a review of their molecular features and potential clinical implications. Int J Mol Sci. 2024;25(2):962. https://doi.org/10.3390/ijms25020962.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Vries F, Huckriede J, Wichapong K, Reutelingsperger C, Nicolaes GAF. The role of extracellular histones in COVID-19. J Intern Med. 2023;293:275–92. https://doi.org/10.1111/joim.13585.

Article  CAS  PubMed  Google Scholar 

Ligi D, Lo Sasso B, Giglio RV, Maniscalco R, DellaFranca C, Agnello L, Ciaccio M, Mannello F. Circulating histones contribute to monocyte and MDW alterations as common mediators in classical and COVID-19 sepsis. Crit Care. 2022;26:260. https://doi.org/10.1186/s13054-022-04138-2.

Article  PubMed  PubMed Central  Google Scholar 

Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, Taylor FB, Esmon NL, Lupu F, Esmon CT. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15:1318–21. https://doi.org/10.1038/nm.2053.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lv X, Wen T, Song J, Xie D, Wu L, Jiang X, Jiang P, Wen Z. Extracellular histones are clinically relevant mediators in the pathogenesis of acute respiratory distress syndrome. Respir Res. 2017;18:165. https://doi.org/10.1186/s12931-017-0651-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Wen Z, Guan L, Jiang P, Gu T, Zhao J, Lv X, Wen T. Extracellular histones play an inflammatory role in acid aspiration-induced acute respiratory distress syndrome. Anesthesiology. 2015;122:127–39. https://doi.org/10.1097/ALN.0000000000000429.

Article  CAS  PubMed  Google Scholar 

Jiang P, Jin Y, Sun M, Jiang X, Yang J, Lv X, Wen Z. Extracellular histones aggravate inflammation in ARDS by promoting alveolar macrophage pyroptosis. Mol Immunol. 2021;135:53–61. https://doi.org/10.1016/j.molimm.2021.04.002.

Article  CAS  PubMed  Google Scholar 

Grailer JJ, Canning BA, Kalbitz M, Haggadone MD, Dhond RM, Andjelkovic AV, Zetoune FS, Ward PA. Critical role for the NLRP3 inflammasome during acute lung injury. J Immunol. 2014;192(12):5974–83. https://doi.org/10.4049/jimmunol.1400368.

Article  CAS  PubMed  Google Scholar 

Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 2018;17:588–606. https://doi.org/10.1038/nrd.2018.97.

Article  CAS  PubMed  Google Scholar 

Fu J, Wu H. Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu Rev Immunol. 2023;41:301–16. https://doi.org/10.1146/annurev-immunol-081022-021207.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM, Núñez G. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013;38:1142–53. https://doi.org/10.1016/j.immuni.2013.05.016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rivers-Auty J, Brough D. Potassium efflux fires the canon: potassium efflux as a common trigger for canonical and noncanonical NLRP3 pathways. Eur J Immunol. 2015;45:275827–61. https://doi.org/10.1002/eji.201545958.

Article  CAS  Google Scholar 

Xu J, Núñez G. The NLRP3 inflammasome: activation and regulation. Trends Biochem Sci. 2023;48:331–44. https://doi.org/10.1016/j.tibs.2022.10.002.

Article  CAS  PubMed  Google Scholar 

Enyedi P, Czirják G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev. 2010;90:559–605. https://doi.org/10.1152/physrev.00029.2009.

Article  CAS  PubMed  Google Scholar 

O’Kelly I. Endocytosis as a mode to regulate functional expression of two-pore domain potassium (K2P) channels. Pflugers Arch. 2015;467:1133–42. https://doi.org/10.1007/s00424-014-1641-9.

Article  CAS  PubMed  Google Scholar 

Nguyen NH, Brodsky JL. The cellular pathways that maintain the quality control and transport of diverse potassium channels. Biochim Biophys Acta Gene Regul Mech. 2023;1866: 194908. https://doi.org/10.1016/j.bbagrm.2023.194908.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di A, Xiong S, Ye Z, Malireddi RKS, Kometani S, Zhong M, Mittal M, Hong Z, Kanneganti TD, Rehman J, Malik AB. The TWIK2 potassium efflux channel in macrophages mediates NLRP3 inflammasome-induced inflammation. Immunity. 2018;49:56-65.e4. https://doi.org/10.1016/j.immuni.2018.04.032.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drinkall S, Lawrence CB, Ossola B, Russell S, Bender C, Brice NB, Dawson LA, Harte M, Brough D. The two pore potassium channel THIK-1 regulates NLRP3 inflammasome activation. Glia. 2022;70:1301–16. https://doi.org/10.1002/glia.24174.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Busch CJ, Favret J, Geirsdóttir L, Molawi K, Sieweke MH. Isolation and long-term cultivation of mouse alveolar macrophages. Bio Protoc. 2019;9(14): e3302. https://doi.org/10.21769/BioProtoc.3302.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim SK, Joe Y, Chen Y, Ryu J, Lee JH, Cho GJ, Ryter SW, Chung HT. Carbon monoxide decreases interleukin-1β levels in the lung through the induction of pyrin. Cell Mol Immunol. 2017;14:349–59. https://doi.org/10.1038/cmi.2015.79.

Article  CAS  PubMed  Google Scholar 

Ding X, Yang DR, Xia L, Chen B, Yu S, Niu Y, Wang M, Li G, Chang C. Targeting TR4 nuclear receptor suppresses prostate cancer invasion via reduction of infiltrating macrophages with alteration of the TIMP-1/MMP2/MMP9 signals. Mol Cancer. 2015;14:16. https://doi.org/10.1186/s12943-014-0281-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evavold CL, Hafner-Bratkovič I, Devant P, D’Andrea JM, Ngwa EM, Boršić E, Doench JG, LaFleur MW, Sharpe AH, Thiagarajah JR, Kagan JC. Control of gasdermin D oligomerization and pyroptosis by the ragulator-Rag-mTORC1 pathway. Cell. 2021;184:4495–511. https://doi.org/10.1016/j.cell.2021.06.028.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holdenrieder S, Stieber P. Clinical use of circulating nucleosomes. Crit Rev Clin Lab Sci. 2009;46:1–24. https://doi.org/10.1080/10408360802485875.

Article  CAS  PubMed  Google Scholar 

Holdenrieder S, Stieber P, Bodenmüller H, Busch M, Von Pawel J, Schalhorn A, Nagel D, Seidel D. Circulating nucleosomes in serum. Ann N Y Acad Sci. 2001;945:93–102. https://doi.org/10.1111/j.1749-6632.2001.tb03869.x.

Article  CAS  PubMed  Google Scholar 

Bosmann M, Grailer JJ, Ruemmler R, Russkamp NF, Zetoune FS, Sarma JV, Standiford TJ, Ward PA. Extracellular histones are essential effectors of C5aR- and C5L2-mediated tissue damage and inflammation in acute lung injury. FASEB J. 2013;27(12):5010–21. https://doi.org/10.1096/fj.13-236380.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu XY, Lv JY, Zhang SQ, Yi X, Xu ZW, Zhi YX, Zhao BX, Pang JX, Yung KKL, Liu SW, Zhou PZ. ML365 inhibits TWIK2 channel to block ATP-induced NLRP3 inflammasome. Acta Pharmacol Sin. 2022;43:992–1000. https://doi.org/10.1038/s41401-021-00739-9.

Article  CAS  PubMed  Google Scholar 

Borchers AC, Langemeyer L, Ungermann C. Who’s in control? Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond. J Cell Biol. 2021;220: e202105120. https://doi.org/10.1083/jcb.202105120.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif