The role of regulatory T cells in vitiligo and therapeutic advances: a mini-review

Frisoli ML, Essien K, Harris JE. Vitiligo: mechanisms of pathogenesis and treatment. Annu Rev Immunol. 2020;38:621–48. https://doi.org/10.1146/annurev-immunol-100919-023531.

Article  CAS  PubMed  Google Scholar 

Bergqvist C, Ezzedine K. Vitiligo: a focus on pathogenesis and its therapeutic implications. J Dermatol. 2021;48(3):252–70. https://doi.org/10.1111/1346-8138.15743.

Article  CAS  PubMed  Google Scholar 

Bergqvist C, Ezzedine K. Vitiligo: a review. Dermatology. 2020;236(6):571–92. https://doi.org/10.1159/000506103.

Article  PubMed  Google Scholar 

Ezzedine K, Lim HW, Suzuki T, Katayama I, Hamzavi I, Lan CC, et al. Revised classification/nomenclature of vitiligo and related issues: the Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res. 2012;25(3):E1-13. https://doi.org/10.1111/j.1755-148X.2012.00997.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ezzedine K, Gauthier Y, Léauté-Labrèze C, Marquez S, Bouchtnei S, Jouary T, et al. Segmental vitiligo associated with generalized vitiligo (mixed vitiligo): a retrospective case series of 19 patients. J Am Acad Dermatol. 2011;65(5):965–71. https://doi.org/10.1016/j.jaad.2010.08.031.

Article  PubMed  Google Scholar 

Badri AM, Todd PM, Garioch JJ, Gudgeon JE, Stewart DG, Goudie RB. An immunohistological study of cutaneous lymphocytes in vitiligo. J Pathol. 1993;170(2):149–55. https://doi.org/10.1002/path.1711700209.

Article  CAS  PubMed  Google Scholar 

Le Poole IC, van den Wijngaard RM, Westerhof W, Das PK. Presence of T cells and macrophages in inflammatory vitiligo skin parallels melanocyte disappearance. Am J Pathol. 1996;148(4):1219–28.

PubMed  PubMed Central  Google Scholar 

Ahn SK, Choi EH, Lee SH, Won JH, Hann SK, Park YK. Immunohistochemical studies from vitiligo–comparison between active and inactive lesions. Yonsei Med J. 1994;35(4):404–10. https://doi.org/10.3349/ymj.1994.35.4.404.

Article  CAS  PubMed  Google Scholar 

Wańkowicz-Kalińska A, van den Wijngaard RM, Tigges BJ, Westerhof W, Ogg GS, Cerundolo V, et al. Immunopolarization of CD4+ and CD8+ T cells to Type-1-like is associated with melanocyte loss in human vitiligo. Lab Investig. 2003;83(5):683–95.

Article  PubMed  Google Scholar 

Strassner JP, Rashighi M, Ahmed Refat M, Richmond JM, Harris JE. Suction blistering the lesional skin of vitiligo patients reveals useful biomarkers of disease activity. J Am Acad Dermatol. 2017;76(5):847-55.e5. https://doi.org/10.1016/j.jaad.2016.12.021.

Article  PubMed  PubMed Central  Google Scholar 

Palermo B, Campanelli R, Garbelli S, Mantovani S, Lantelme E, Brazzelli V, et al. Specific cytotoxic T lymphocyte responses against Melan-A/MART1, tyrosinase and gp100 in vitiligo by the use of major histocompatibility complex/peptide tetramers: the role of cellular immunity in the etiopathogenesis of vitiligo. J Invest Dermatol. 2001;117(2):326–32. https://doi.org/10.1046/j.1523-1747.2001.01408.x.

Article  CAS  PubMed  Google Scholar 

van den Boorn JG, Konijnenberg D, Dellemijn TA, van der Veen JP, Bos JD, Melief CJ, et al. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. J Invest Dermatol. 2009;129(9):2220–32. https://doi.org/10.1038/jid.2009.32.

Article  CAS  PubMed  Google Scholar 

Grimes PE, Morris R, Avaniss-Aghajani E, Soriano T, Meraz M, Metzger A. Topical tacrolimus therapy for vitiligo: therapeutic responses and skin messenger RNA expression of proinflammatory cytokines. J Am Acad Dermatol. 2004;51(1):52–61. https://doi.org/10.1016/j.jaad.2003.12.031.

Article  PubMed  Google Scholar 

Rashighi M, Agarwal P, Richmond JM, Harris TH, Dresser K, Su MW, et al. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci Transl Med. 2014;6(223):22323.

Article  Google Scholar 

Bertolotti A, Boniface K, Vergier B, Mossalayi D, Taieb A, Ezzedine K, et al. Type I interferon signature in the initiation of the immune response in vitiligo. Pigment Cell Melanoma Res. 2014;27(3):398–407. https://doi.org/10.1111/pcmr.12219.

Article  CAS  PubMed  Google Scholar 

Wang XX, Wang QQ, Wu JQ, Jiang M, Chen L, Zhang CF, et al. Increased expression of CXCR3 and its ligands in patients with vitiligo and CXCL10 as a potential clinical marker for vitiligo. Br J Dermatol. 2016;174(6):1318–26. https://doi.org/10.1111/bjd.14416.

Article  CAS  PubMed  Google Scholar 

Boniface K, Jacquemin C, Darrigade AS, Dessarthe B, Martins C, Boukhedouni N, et al. Vitiligo skin is imprinted with resident memory CD8 T cells expressing CXCR3. J Invest Dermatol. 2018;138(2):355–64. https://doi.org/10.1016/j.jid.2017.08.038.

Article  CAS  PubMed  Google Scholar 

Feng Y, Lu Y. Advances in vitiligo: update on therapeutic targets. Front Immunol. 2022;13:986918. https://doi.org/10.3389/fimmu.2022.986918.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khaitan BK, Sindhuja T. Autoimmunity in vitiligo: therapeutic implications and opportunities. Autoimmun Rev. 2022;21(1):102932. https://doi.org/10.1016/j.autrev.2021.102932.

Article  PubMed  Google Scholar 

Sabat R, Wolk K, Loyal L, Döcke WD, Ghoreschi K. T cell pathology in skin inflammation. Semin Immunopathol. 2019;41(3):359–77. https://doi.org/10.1007/s00281-019-00742-7.

Article  PubMed  PubMed Central  Google Scholar 

Scharschmidt TC, Vasquez KS, Truong HA, Gearty SV, Pauli ML, Nosbaum A, et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity. 2015;43(5):1011–21. https://doi.org/10.1016/j.immuni.2015.10.016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wolff MJ, Leung JM, Davenport M, Poles MA, Cho I, Loke P. TH17, TH22 and Treg cells are enriched in the healthy human cecum. PLoS ONE. 2012;7(7):e41373. https://doi.org/10.1371/journal.pone.0041373.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA, et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol. 2001;2(4):301–6. https://doi.org/10.1038/86302.

Article  CAS  PubMed  Google Scholar 

Dwivedi M, Laddha NC, Arora P, Marfatia YS, Begum R. reased regulatory T-cells and CD4(+) /CD8(+) ratio correlate with disease onset and progression in patients with generalized vitiligo. Pigment Cell Melanoma Res. 2013;26(4):586–91. https://doi.org/10.1111/pcmr.12105.

Article  CAS  PubMed  Google Scholar 

Klarquist J, Denman CJ, Hernandez C, Wainwright DA, Strickland FM, Overbeck A, et al. Reduced skin homing by functional Treg in vitiligo. Pigment Cell Melanoma Res. 2010;23(2):276–86. https://doi.org/10.1111/j.1755-148X.2010.00688.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lili Y, Yi W, Ji Y, Yue S, Weimin S, Ming L. Global activation of CD8+ cytotoxic T lymphocytes correlates with an impairment in regulatory T cells in patients with generalized vitiligo. PLoS ONE. 2012;7(5):e37513. https://doi.org/10.1371/journal.pone.0037513.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huo J, Liu T, Li F, Song X, Hou X. MicroRNA-21-5p protects melanocytes via targeting STAT3 and modulating Treg/Teff balance to alleviate vitiligo. Mol Med Rep. 2021. https://doi.org/10.3892/mmr.2020.11689.

Article  PubMed  PubMed Central  Google Scholar 

Essien KI, Katz EL, Strassner JP, Harris JE. Regulatory T cells require CCR6 for skin migration and local suppression of vitiligo. J Invest Dermatol. 2022;142(12):3158-66.e7. https://doi.org/10.1016/j.jid.2022.05.1090.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gellatly KJ, Strassner JP, Essien K, Refat MA, Murphy RL, Coffin-Schmitt A, et al. scRNA-seq of human vitiligo reveals complex networks of subclinical immune activation and a role for CCR5 in T-reg function. Sci Transl Med. 2021. https://doi.org/10.1126/scitranslmed.abd8995.

Article  PubMed  PubMed Central  Google Scholar 

Chatterjee S, Eby JM, Al-Khami AA, Soloshchenko M, Kang HK, Kaur N, et al. A quantitative increase in regulatory T cells controls development of vitiligo. J Invest Dermatol. 2014;134(5):1285–94. https://doi.org/10.1038/jid.2013.540.

Article  CAS  PubMed  Google Scholar 

Tembhre MK, Parihar AS, Sharma VK, Sharma A, Chattopadhyay P, Gupta S. Alteration in regulatory T cells and programmed cell death 1-expressing regulatory T cells in active generalized vitiligo and their clinical correlation. Br J Dermatol. 2015;172(4):940–50. https://doi.org/10.1111/bjd.13511.

Article  CAS  PubMed  Google Scholar 

Eby JM, Kang HK, Tully ST, Bindeman WE, Peiffer DS, Chatterjee S, et al. CCL22 to activate Treg migration and suppress depigmentation in vitiligo. J Invest Dermatol. 2015;135(6):1574–80. https://doi.org/10.1038/jid.2015.26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Willemsen M, Post NF, van Uden NOP, Narayan VS, Chielie S, Kem

留言 (0)

沒有登入
gif