Prostacyclin synthase deficiency exacerbates systemic inflammatory responses in lipopolysaccharide-induced septic shock in mice

van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17:407–20. https://doi.org/10.1038/nri.2017.36.

Article  CAS  PubMed  Google Scholar 

Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the global burden of disease study. Lancet. 2020;395:200–11. https://doi.org/10.1016/s0140-6736(19)32989-7.

Article  PubMed  PubMed Central  Google Scholar 

Hattori Y, Hattori K, Suzuki T, Matsuda N. Recent advances in the pathophysiology and molecular basis of sepsis-associated organ dysfunction: novel therapeutic implications and challenges. Pharmacol Ther. 2017;177:56–66. https://doi.org/10.1016/j.pharmthera.2017.02.040.

Article  CAS  PubMed  Google Scholar 

Pinsky MR, Vincent JL, Deviere J, Alegre M, Kahn RJ, Dupont E. Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest. 1993;103:565–75. https://doi.org/10.1378/chest.103.2.565.

Article  CAS  PubMed  Google Scholar 

Dalli J, Colas RA, Quintana C, et al. Human sepsis eicosanoid and proresolving lipid mediator temporal profiles: correlations with survival and clinical outcomes. Crit Care Med. 2017;45:58–68. https://doi.org/10.1097/ccm.0000000000002014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hara S. Prostaglandin terminal synthases as novel therapeutic targets. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93:703–23. https://doi.org/10.2183/pjab.93.044.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee BH, Inui D, Suh GY, et al. Association of body temperature and antipyretic treatments with mortality of critically ill patients with and without sepsis: multi-centered prospective observational study. Crit Care. 2012;16:R33. https://doi.org/10.1186/cc11211.

Article  PubMed  PubMed Central  Google Scholar 

Maehara T, Higashitarumi F, Kondo R, Fujimori K. Prostaglandin F2α receptor antagonist attenuates LPS-induced systemic inflammatory response in mice. FASEB J. 2020;34:15197–207. https://doi.org/10.1096/fj.202001481R.

Article  CAS  PubMed  Google Scholar 

Ishii M, Asano K, Namkoong H, et al. CRTH2 is a critical regulator of neutrophil migration and resistance to polymicrobial sepsis. J Immunol. 2012;188:5655–64. https://doi.org/10.4049/jimmunol.1102330.

Article  CAS  PubMed  Google Scholar 

Choudhry MA, Ahmad S, Sayeed MM. Role of Ca2+ in prostaglandin E2-induced T-lymphocyte proliferative suppression in sepsis. Infect Immun. 1995;63:3101–5. https://doi.org/10.1128/iai.63.8.3101-3105.1995.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ochiai T, Honsawa T, Sasaki Y, Hara S. Prostacyclin Synthase as an ambivalent regulator of inflammatory reactions. Biol Pharm Bull. 2022;45:979–84. https://doi.org/10.1248/bpb.b22-00370.

Article  CAS  PubMed  Google Scholar 

Ochiai T, Sasaki Y, Yokoyama C, Kuwata H, Hara S. Absence of prostacyclin greatly relieves cyclophosphamide-induced cystitis and bladder pain in mice. FASEB J. 2021;35:e21952. https://doi.org/10.1096/fj.202101025R.

Article  CAS  PubMed  Google Scholar 

Ochiai T, Sasaki Y, Kuwata H, Nakatani Y, Yokoyama C, Hara S. Coordinated action of microsomal prostaglandin E synthase-1 and prostacyclin synthase on contact hypersensitivity. Biochem Biophys Res Commun. 2021;546:124–9. https://doi.org/10.1016/j.bbrc.2021.02.004.

Article  CAS  PubMed  Google Scholar 

Ipseiz N, Pickering RJ, Rosas M, et al. Tissue-resident macrophages actively suppress IL-1beta release via a reactive prostanoid/IL-10 pathway. EMBO J. 2020;39:103454.

Article  Google Scholar 

Kuwata H, Nakatani E, Tomitsuka Y, et al. Deficiency of long-chain acyl-CoA synthetase 4 leads to lipopolysaccharide-induced mortality in a mouse model of septic shock. FASEB J. 2023;37:e23330. https://doi.org/10.1096/fj.202301314R.

Article  CAS  PubMed  Google Scholar 

Liu L, Xu M, Zhang Z, et al. TRPA1 protects mice from pathogenic Citrobacter rodentium infection via maintaining the colonic epithelial barrier function. FASEB J. 2023;37:e22739. https://doi.org/10.1096/fj.202200483RRR.

Article  CAS  PubMed  Google Scholar 

Takeuchi Y, Kikusui T, Mori Y. Changes in the behavioral parameters following the lipopolysaccharide administration in goats. J Vet Med Sci. 1995;57:1041–4. https://doi.org/10.1292/jvms.57.1041.

Article  CAS  PubMed  Google Scholar 

Chen H, Shen Y, Liang Y, Qiu Y, Xu M, Li C. Selexipag improves lipopolysaccharide-induced ARDS on C57BL/6 mice by modulating the cAMP/PKA and cAMP/Epac1 signaling pathways. Biol Pharm Bull. 2022;45:1043–52. https://doi.org/10.1248/bpb.b21-01057.

Article  CAS  PubMed  Google Scholar 

Muendlein HI, Connolly WM, Magri Z, et al. ZBP1 promotes inflammatory responses downstream of TLR3/TLR4 via timely delivery of RIPK1 to TRIF. Proc Natl Acad Sci U S A. 2022;119:e2113872119. https://doi.org/10.1073/pnas.2113872119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nassar A, Sharon-Granit Y, Azab AN. Psychotropic drugs attenuate lipopolysaccharide-induced hypothermia by altering hypothalamic levels of inflammatory mediators in rats. Neurosci Lett. 2016;626:59–67. https://doi.org/10.1016/j.neulet.2016.05.019.

Article  CAS  PubMed  Google Scholar 

Machado NLS, Bandaru SS, Abbott SBG, Saper CB. EP3R-expressing glutamatergic preoptic neurons mediate inflammatory fever. J Neurosci. 2020;40:2573–88. https://doi.org/10.1523/jneurosci.2887-19.2020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sasaki Y, Kamiyama S, Kamiyama A, et al. Genetic-deletion of cyclooxygenase-2 downstream prostacyclin synthase suppresses inflammatory reactions but facilitates carcinogenesis, unlike deletion of microsomal prostaglandin E synthase-1. Sci Rep. 2015;5:17376. https://doi.org/10.1038/srep17376.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toki S, Zhou W, Goleniewska K, et al. Endogenous PGI2 signaling through IP inhibits neutrophilic lung inflammation in LPS-induced acute lung injury mice model. Prostaglandins Other Lipid Mediat. 2018;136:33–43. https://doi.org/10.1016/j.prostaglandins.2018.04.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou W, Zhang J, Goleniewska K, et al. Prostaglandin I2 suppresses proinflammatory chemokine expression, CD4 T cell activation, and STAT6-independent allergic lung inflammation. J Immunol. 2016;197:1577–86. https://doi.org/10.4049/jimmunol.1501063.

Article  CAS  PubMed  Google Scholar 

Takahashi Y, Tokuoka S, Masuda T, et al. Augmentation of allergic inflammation in prostanoid IP receptor deficient mice. Br J Pharmacol. 2002;137:315–22. https://doi.org/10.1038/sj.bjp.0704872.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Misawa H, Ohashi W, Tomita K, et al. Prostacyclin mimetics afford protection against lipopolysaccharide/d-galactosamine-induced acute liver injury in mice. Toxicol Appl Pharmacol. 2017;334:55–65. https://doi.org/10.1016/j.taap.2017.09.003.

Article  CAS  PubMed  Google Scholar 

Kuwano K, Hashino A, Asaki T, et al. 2-[4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy]-N-(methylsulfonyl)acetamide (NS-304), an orally available and long-acting prostacyclin receptor agonist prodrug. J Pharmacol Exp Ther. 2007;322:1181–8. https://doi.org/10.1124/jpet.107.124248.

Article  CAS  PubMed  Google Scholar 

Abramovitz M, Adam M, Boie Y, et al. The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs. Biochim Biophys Acta. 2000;1483:285–93. https://doi.org/10.1016/s1388-1981(99)00164-x.

Article  CAS  PubMed  Google Scholar 

Sitbon O, Channick R, Chin KM, et al. Selexipag for the treatment of pulmonary arterial hypertension. N Engl J Med. 2015;373:2522–33. https://doi.org/10.1056/NEJMoa1503184.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif