Prevention of paclitaxel-induced peripheral neuropathy: literature review of potential pharmacological interventions

Ibrahim EY, Ehrlich BE (2020) Prevention of chemotherapy-induced peripheral neuropathy: a review of recent findings. Crit Rev Oncol Hematol 145:102831. https://doi.org/10.1016/J.CRITREVONC.2019.102831

Article  PubMed  Google Scholar 

Van Vuuren RJ, Visagie MH, Theron AE, Joubert AM (2015) Antimitotic drugs in the treatment of cancer. Cancer Chemother Pharmacol 76(6):1101–1112. https://doi.org/10.1007/S00280-015-2903-8/TABLES/1

Article  PubMed  PubMed Central  Google Scholar 

McGrogan BT, Gilmartin B, Carney DN, McCann A (2008) Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta Rev Cancer 1785(2):96–132. https://doi.org/10.1016/j.bbcan.2007.10.004

Article  CAS  Google Scholar 

da Costa R, Passos GF, Quintão NLM, Fernandes ES, Maia JRLCB, Campos MM, Calixto JB (2020) Taxane-induced neurotoxicity: pathophysiology and therapeutic perspectives. Br J Pharmacol 177:3127–3146

Article  PubMed  PubMed Central  Google Scholar 

Tanabe Y, Hashimoto K, Shimizu C, Hirakawa A, Harano K, Yunokawa M, Yonemori K, Katsumata N, Tamura K, Ando M, Kinoshita T, Fujiwara Y (2013) Paclitaxel-induced peripheral neuropathy in patients receiving adjuvant chemotherapy for breast cancer. Int J Clin Oncol 18(1):132–138. https://doi.org/10.1007/s10147-011-0352-x

Article  CAS  PubMed  Google Scholar 

Katona I, Weis J (2018) Diseases of the peripheral nerves. Handb Clin Neurol 145:453–474. https://doi.org/10.1016/B978-0-12-802395-2.00031-6

Article  Google Scholar 

Jimenez-Andrade JM, Peters CM, Mejia NA, Ghilardi JR, Kuskowski MA, Mantyh PW (2006) Sensory neurons and their supporting cells located in the trigeminal, thoracic and lumbar ganglia differentially express markers of injury following intravenous administration of paclitaxel in the rat. Neurosci Lett 405(1–2):62–67. https://doi.org/10.1016/J.NEULET.2006.06.043

Article  CAS  PubMed  Google Scholar 

Liu CC, Lu N, Cui Y, Yang T, Zhao ZQ, Xin WJ, Liu XG (2010) Prevention of paclitaxel-induced allodynia by minocycline: effect on loss of peripheral nerve fibers and infiltration of macrophages in rats. Mol Pain. https://doi.org/10.1186/1744-8069-6-76

Article  PubMed  PubMed Central  Google Scholar 

Staff NP, Fehrenbacher JC, Caillaud M, Damaj MI, Segal RA, Rieger S (2020) Pathogenesis of paclitaxel-induced peripheral neuropathy: a current review of in vitro and in vivo findings using rodent and human model systems. Exp Neurol 324:113121. https://doi.org/10.1016/J.EXPNEUROL.2019.113121

Article  CAS  PubMed  Google Scholar 

Fukuda Y, Li Y, Segal RA (2017) A mechanistic understanding of axon degeneration in chemotherapy-induced peripheral neuropathy. Front Neurosci. https://doi.org/10.3389/FNINS.2017.00481

Article  PubMed  PubMed Central  Google Scholar 

Xiao WH, Bennett GJ (2012) Effects of mitochondrial poisons on the neuropathic pain produced by the chemotherapeutic agents, paclitaxel and oxaliplatin. Pain 153(3):704–709. https://doi.org/10.1016/J.PAIN.2011.12.011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Mazidi S, Alotaibi M, Nedjadi T, Chaudhary A, Alzoghaibi M, Djouhri L (2018) Blocking of cytokines signalling attenuates evoked and spontaneous neuropathic pain behaviours in the paclitaxel rat model of chemotherapy-induced neuropathy. Eur J Pain 22(4):810–821. https://doi.org/10.1002/EJP.1169

Article  CAS  PubMed  Google Scholar 

da Costa R, Passos GF, Quintão NLM, Fernandes ES, Maia JRLCB, Campos MM, Calixto JB (2020) Taxane-induced neurotoxicity: pathophysiology and therapeutic perspectives. Br J Pharmacol 177(14):3127–3146. https://doi.org/10.1111/bph.15086

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grisold W, Cavaletti G, Windebank AJ (2012) Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention. Neuro Oncol. https://doi.org/10.1093/neuonc/nos203

Article  PubMed  PubMed Central  Google Scholar 

Velasco R, Bruna J (2015) Taxane-induced peripheral neurotoxicity. Toxics 3(2):152. https://doi.org/10.3390/TOXICS3020152

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tamburin S, Park SB, Alberti P, Demichelis C, Schenone A, Argyriou AA (2019) Taxane and epothilone-induced peripheral neurotoxicity: From pathogenesis to treatment. J Peripher Nerv Syst 24:S40–S51. https://doi.org/10.1111/JNS.12336

Article  CAS  PubMed  Google Scholar 

Nasser AH, Gendy AM, El-Yamany MF, El-Tanbouly DM (2022) Upregulation of neuronal progranulin mediates the antinociceptive effect of trimetazidine in paclitaxel-induced peripheral neuropathy: role of ERK1/2 signaling. Toxicol Appl Pharmacol 448:116096. https://doi.org/10.1016/J.TAAP.2022.116096

Article  CAS  PubMed  Google Scholar 

Hammad ASA, Sayed-Ahmed MM, Abdel Hafez SMN, Ibrahim ARN, Khalifa MMA, El-Daly M (2023) Trimetazidine alleviates paclitaxel-induced peripheral neuropathy through modulation of TLR4/p38/NF-κB and klotho protein expression. Chem Biol Interact 376:110446. https://doi.org/10.1016/J.CBI.2023.110446

Article  CAS  PubMed  Google Scholar 

Kalynovska N, Diallo M, Sotakova-Kasparova D, Palecek J (2020) Losartan attenuates neuroinflammation and neuropathic pain in paclitaxel-induced peripheral neuropathy. J Cell Mol Med 24(14):7949–7958. https://doi.org/10.1111/JCMM.15427

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sisignano M, Angioni C, Park CK, Dos SSM, Jordan H, Kuzikov M, Liu D, Zinn S, Hohman SW, Schreiber Y, Zimmer B, Schmidt M, Lu R, Suo J, Zhang DD, Schäfer SMG, Hofmann M, Yekkirala AS, De Bruin N, Parnham MJ, Woolf CJ, Ji RR, Scholich K, Geisslinger G (2016) Targeting CYP2J to reduce paclitaxel-induced peripheral neuropathic pain. Proc Natl Acad Sci U S A 113(44):12544–12549. https://doi.org/10.1073/PNAS.1613246113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bouchenaki H, Bernard A, Bessaguet F, Frachet S, Richard L, Sturtz F, Magy L, Bourthoumieu S, Demiot C, Danigo A (2022) Neuroprotective effect of ramipril is mediated by AT2 in a mouse MODEL of paclitaxel-induced peripheral neuropathy. Pharmaceutics. https://doi.org/10.3390/pharmaceutics14040848

Article  PubMed  PubMed Central  Google Scholar 

Semis HS, Kandemir FM, Kaynar O, Dogan T, Arikan SM (2021) The protective effects of hesperidin against paclitaxel-induced peripheral neuropathy in rats. Life Sci 287:120104. https://doi.org/10.1016/J.LFS.2021.120104

Article  CAS  PubMed  Google Scholar 

Miao H, Xu J, Xu D, Ma X, Zhao X, Liu L (2019) Nociceptive behavior induced by chemotherapeutic paclitaxel and beneficial role of antioxidative pathways. Physiol Res 68(3):491–500. https://doi.org/10.33549/PHYSIOLRES.933939

Article  CAS  PubMed  Google Scholar 

Yardım A, Kandemir FM, Çomaklı S, Özdemir S, Caglayan C, Kucukler S, Çelik H (2021) Protective effects of curcumin against paclitaxel-induced spinal cord and sciatic nerve injuries in rats. Neurochem Res 46(2):379–395. https://doi.org/10.1007/S11064-020-03174-0/FIGURES/11

Article  PubMed  Google Scholar 

Galley HF, McCormick B, Wilson KL, Lowes DA, Colvin L, Torsney C (2017) Melatonin limits paclitaxel-induced mitochondrial dysfunction in vitro and protects against paclitaxel-induced neuropathic pain in the rat. J Pineal Res 63(4):e12444. https://doi.org/10.1111/JPI.12444

Article  PubMed  PubMed Central  Google Scholar 

Miranda HF, Sierralta F, Aranda N, Poblete P, Castillo RL, Noriega V, Prieto JC (2018) Antinociception induced by rosuvastatin in murine neuropathic pain. Pharmacol Rep 70(3):503–508. https://doi.org/10.1016/J.PHAREP.2017.11.012

Article  CAS  PubMed  Google Scholar 

El-Sawaf ES, Saleh S, Abdallah DM, Ahmed KA, El-Abhar HS (2021) Vitamin D and rosuvastatin obliterate peripheral neuropathy in a type-2 diabetes model through modulating Notch1, Wnt-10α, TGF-β and NRF-1 crosstalk. Life Sci 279:119697. https://doi.org/10.1016/j.lfs.2021.119697

Article  CAS  PubMed  Google Scholar 

Meng J, Zhang Q, Yang C, Xiao L, Xue Z, Zhu J (2019) Duloxetine, a balanced serotonin-norepinephrine reuptake inhibitor, improves painful chemotherapy-induced peripheral neuropathy by inhibiting activation of p38 MAPK and NF-κB. Front Pharmacol. https://doi.org/10.3389/fphar.2019.00365

Article  PubMed  PubMed Central  Google Scholar 

Lu Y, Zhang P, Zhang Q, Yang C, Qian Y, Suo J, Tao X, Zhu J (2020) Duloxetine attenuates paclitaxel-induced peripheral nerve injury by inhibiting p53-related pathways. J Pharmacol Exp Ther 373(3):453–462. https://doi.org/10.1124/jpet.120.265082

Article  CAS  PubMed  Google Scholar 

Al-Massri KF, Ahmed LA, El-Abhar HS (2018) Pregabalin and lacosamide ameliorate paclitaxel-induced peripheral neuropathy via inhibition of JAK/STAT signaling pathway and Notch-1 receptor. Neurochem Int 120:164–171. https://doi.org/10.1016/J.NEUINT.2018.08.007

Article  CAS  PubMed  Google Scholar 

Inyang KE, McDougal TA, Ramirez ED, Williams M, Laumet G, Kavelaars A, Heijnen CJ, Burton M, Dussor G, Price TJ (2019) Alleviation of paclitaxel-induced mechanical hypersensitivity and hyperalgesic priming with AMPK activators in male and female mice. Neurobiol Pain 6:100037. https://doi.org/10.1016/J.YNPAI.2019.100037

Article  PubMed  PubMed Central  Google Scholar 

Shigematsu N, Kawashiri T, Kobayashi D, Shimizu S, Mine K, Hiromoto S, Uchida M, Egashira N, Shimazoe T (2020) Neuroprotective effect of alogliptin on oxaliplatin-induced peripheral neuropathy in

留言 (0)

沒有登入
gif