PAX1 represses canonical Wnt signaling pathway and plays dual roles during endoderm differentiation

MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cselenyi CS, Lee E. Context-dependent activation or inhibition of Wnt-beta-catenin signaling by Kremen. Sci Signal. 2008;1(8):pe10.

Article  PubMed  Google Scholar 

Railo A, Pajunen A, Itaranta P, Naillat F, Vuoristo J, Kilpelainen P, Vainio S. Genomic response to Wnt signalling is highly context-dependent--evidence from DNA microarray and chromatin immunoprecipitation screens of Wnt/TCF targets. Exp Cell Res. 2009;315(16):2690–704.

Article  CAS  PubMed  Google Scholar 

Masuda T, Ishitani T. Context-dependent regulation of the beta-catenin transcriptional complex supports diverse functions of Wnt/beta-catenin signaling. J Biochem. 2017;161(1):9–17.

Article  CAS  PubMed  Google Scholar 

Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169(6):985–99.

Article  CAS  PubMed  Google Scholar 

Hrckulak D, Kolar M, Strnad H, Korinek V. TCF/LEF transcription factors: an update from the internet resources. Cancers. 2016;8(7):70.

Article  PubMed  PubMed Central  Google Scholar 

Kikuchi A, Kishida S, Yamamoto H. Regulation of Wnt signaling by protein-protein interaction and post-translational modifications. Exp Mol Med. 2006;38(1):1–10.

Article  CAS  PubMed  Google Scholar 

Celen AB, Sahin U. Sumoylation on its 25th anniversary: mechanisms, pathology, and emerging concepts. FEBS J. 2020;287(15):3110–40.

Article  CAS  PubMed  Google Scholar 

Huang CH, Yang TT, Lin KI. Mechanisms and functions of SUMOylation in health and disease: a review focusing on immune cells. J Biomed Sci. 2024;31(1):16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamamoto H, Ihara M, Matsuura Y, Kikuchi A. Sumoylation is involved in beta-catenin-dependent activation of Tcf-4. EMBO J. 2003;22(9):2047–59.

Article  CAS  PubMed  PubMed Central  Google Scholar 

D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23(12):1534–41.

Article  CAS  PubMed  Google Scholar 

Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev. 2003;120(11):1351–83.

Article  CAS  PubMed  Google Scholar 

Magaletta ME, Siller R, Maehr R. Differentiation of human pluripotent stem cells toward pharyngeal endoderm derivatives: current status and potential. Curr Top Dev Biol. 2020;138:175–208.

Article  CAS  PubMed  Google Scholar 

Sui L, Bouwens L, Mfopou JK. Signaling pathways during maintenance and definitive endoderm differentiation of embryonic stem cells. Int J develop biol. 2013;57(1):1–12.

Article  CAS  Google Scholar 

Dziedzicka D, Tewary M, Keller A, Tilleman L, Prochazka L, Ostblom J, Couvreu De Deckersberg E, Markouli C, Franck S, Van Nieuwerburgh F, et al. Endogenous suppression of WNT signalling in human embryonic stem cells leads to low differentiation propensity towards definitive endoderm. Sci Rep. 2021;11(1):6137.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang J, Guo X, Li W, Zhang H. Activation of Wnt/beta-catenin signalling via GSK3 inhibitors direct differentiation of human adipose stem cells into functional hepatocytes. Sci Rep. 2017;7:40716.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scheibner K, Bakhti M, Bastidas-Ponce A, Lickert H. Wnt signaling: implications in endoderm development and pancreas organogenesis. Curr Opin Cell Biol. 2019;61:48–55.

Article  CAS  PubMed  Google Scholar 

Liu J, Yang L, Lu Z, Wang Q. Tmem88 plays an essential role in pharyngeal pouch progenitor specification by inhibiting Wnt/β-catenin signaling. Life Med. 2023;2(6):1–10.

Thompson B, Davidson EA, Liu W, Nebert DW, Bruford EA, Zhao H, Dermitzakis ET, Thompson DC, Vasiliou V. Overview of PAX gene family: analysis of human tissue-specific variant expression and involvement in human disease. Hum Genet. 2021;140(3):381–400.

Article  CAS  PubMed  Google Scholar 

Wu W, Kong X, Jia Y, Jia Y, Ou W, Dai C, Li G, Gao R. An overview of PAX1: expression, function and regulation in development and diseases. Front cell develop biol. 2022;10:1051102.

Article  Google Scholar 

Yamazaki Y, Urrutia R, Franco LM, Giliani S, Zhang K, Alazami AM, Dobbs AK, Masneri S, Joshi A, Otaizo-Carrasquero F, et al. PAX1 is essential for development and function of the human thymus. Sci Immunol. 2020;5(44):eaax1036.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pohl E, Aykut A, Beleggia F, Karaca E, Durmaz B, Keupp K, Arslan E, Palamar M, Yigit G, Ozkinay F, et al. A hypofunctional PAX1 mutation causes autosomal recessively inherited otofaciocervical syndrome. Hum Genet. 2013;132(11):1311–20.

Article  CAS  PubMed  Google Scholar 

Paganini I, Sestini R, Capone GL, Putignano AL, Contini E, Giotti I, Gensini F, Marozza A, Barilaro A, Porfirio B, et al. A novel PAX1 null homozygous mutation in autosomal recessive otofaciocervical syndrome associated with severe combined immunodeficiency. Clin Genet. 2017;92(6):664–8.

Article  CAS  PubMed  Google Scholar 

Patil SJ, Das Bhowmik A, Bhat V, Satidevi Vineeth V, Vasudevamurthy R, Dalal A. Autosomal recessive otofaciocervical syndrome type 2 with novel homozygous small insertion in PAX1 gene. Am J Med Genet A. 2018;176(5):1200–6.

Article  CAS  PubMed  Google Scholar 

Parent Audrey V, Russ Holger A, Khan Imran S, LaFlam TN, Metzger Todd C, Anderson Mark S, Hebrok M. Generation of functional Thymic epithelium from human embryonic stem cells that supports host T cell development. Cell Stem Cell. 2013;13(2):219–29.

Article  CAS  PubMed  Google Scholar 

Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Develop dynam: an official public Am Assoc Anatomists. 1995;203(3):253–310.

Article  CAS  Google Scholar 

Chen X, Huang H, Wang H, Guo F, Du X, Ma L, Zhao L, Pan Z, Gui H, Yuan T, et al. Characterization of zebrafish Pax1b and Pax9 in fin bud development. Biomed Res Int. 2014;2014:309385.

Article  PubMed  PubMed Central  Google Scholar 

Liu YH, Lin TC, Hwang SL. Zebrafish Pax1a and Pax1b are required for pharyngeal pouch morphogenesis and ceratobranchial cartilage development. Mech Dev. 2020;161:103598.

Article  CAS  PubMed  Google Scholar 

Yan D, Wiesmann M, Rohan M, Chan V, Jefferson AB, Guo L, Sakamoto D, Caothien RH, Fuller JH, Reinhard C, et al. Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/beta -catenin signaling is activated in human colon tumors. Proc Natl Acad Sci USA. 2001;98(26):14973–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol. 2002;22(4):1172–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hovanes K, Li TW, Munguia JE, Truong T, Milovanovic T, Lawrence Marsh J, Holcombe RF, Waterman ML. Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat Genet. 2001;28(1):53–7.

Article  CAS  PubMed  Google Scholar 

Renard CA, Labalette C, Armengol C, Cougot D, Wei Y, Cairo S, Pineau P, Neuveut C, de Reynies A, Dejean A, et al. Tbx3 is a downstream target of the Wnt/beta-catenin pathway and a critical mediator of beta-catenin survival functions in liver cancer. Cancer Res. 2007;67(3):901–10.

Article  CAS  PubMed  Google Scholar 

Medina MA, Ugarte GD, Vargas MF, Avila ME, Necunir D, Elorza AA, Gutierrez SE, De Ferrari GV. Alternative RUNX1 promoter regulation by Wnt/beta-catenin signaling in leukemia cells and human hematopoietic progenitors. J Cell Physiol. 2016;231(7):1460–7.

Article  CAS  PubMed  Google Scholar 

Chen Y, Li Y, Xue J, Gong A, Yu G, Zhou A, Lin K, Zhang S, Zhang N, Gottardi CJ, et al. Wnt-induced deubiquitination FoxM1 ensures nucleus beta-catenin transactivation. EMBO J. 2016;35(6):668–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Batlle E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G, Meeldijk J, Robertson J, van de Wetering M, Pawson T, et al. Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell. 2002;111(2):251–63.

Article  CAS  PubMed  Google

留言 (0)

沒有登入
gif