Deubiquitinating enzymes: potential regulators of the tumor microenvironment and implications for immune evasion

Damgaard RB. The ubiquitin system: from cell signalling to disease biology and new therapeutic opportunities. Cell Death Differ. 2021;28(2):423–6.

Article  PubMed  PubMed Central  Google Scholar 

Ebner P, Versteeg GA, Ikeda F. Ubiquitin enzymes in the regulation of immune responses. Crit Rev Biochem Mol Biol. 2017;52(4):425–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He M, Zhou Z, Shah AA, Zou H, Tao J, Chen Q, et al. The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics. Cell Biosci. 2016;6:62.

Article  PubMed  PubMed Central  Google Scholar 

Georges A, Gros P, Fodil N. USP15: a review of its implication in immune and inflammatory processes and tumor progression. Genes Immun. 2021;22(1):12–23.

Article  CAS  PubMed  Google Scholar 

Choi HSand Baek KH. Pro-apoptotic and anti-apoptotic regulation mediated by deubiquitinating enzymes. Cell Mol Life Sci. 2022;79(2):117.

Article  Google Scholar 

Li TJ, Jin KZ, Zhou HY, Liao ZY, Zhang HR, Shi SM, et al. Deubiquitinating PABPC1 by USP10 upregulates CLK2 translation to promote tumor progression in pancreatic ductal adenocarcinoma. Cancer Lett. 2023;576:216411.

Article  CAS  PubMed  Google Scholar 

Xue S, Wu W, Wang Z, Lu G, Sun J, Jin X, et al. Corrigendum: USP5 promotes metastasis in Non-small Cell Lung Cancer by inducing epithelial-mesenchymal transition via Wnt/beta-Catenin pathway. Front Pharmacol. 2020;11:948.

Article  PubMed  PubMed Central  Google Scholar 

Sheng B, Wei Z, Wu X, Li Y, Liu Z. USP12 promotes breast cancer angiogenesis by maintaining midkine stability. Cell Death Dis. 2021;12(11):1074.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Liu R, Mo H, Xiao X, Xu Q, Zhao W. Deubiquitinase PSMD7 promotes the proliferation, invasion, and cisplatin resistance of gastric cancer cells by stabilizing RAD23B. Int J Biol Sci. 2021;17(13):3331–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Q, Shao X, Zhang Y, Zhu M, Wang FXC, Mu J, et al. Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Med. 2023;12(10):11149–65.

Article  PubMed  PubMed Central  Google Scholar 

Armand P. Immune checkpoint blockade in hematologic malignancies. Blood. 2015;125(22):3393–400.

Article  CAS  PubMed  Google Scholar 

Rosenberg Jand Huang J. CD8(+) T cells and NK cells: parallel and complementary soldiers of Immunotherapy. Curr Opin Chem Eng. 2018;19:9–20.

Article  Google Scholar 

Maimela NR, Liu S, Zhang Y. Fates of CD8 + T cells in Tumor Microenvironment. Comput Struct Biotechnol J. 2019;17:1–13.

Article  CAS  PubMed  Google Scholar 

Quaranta V, Rainer C, Nielsen SR, Raymant ML, Ahmed MS, Engle DD, et al. Macrophage-derived Granulin Drives Resistance to Immune Checkpoint Inhibition in metastatic pancreatic Cancer. Cancer Res. 2018;78(15):4253–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barbazán Jand Vignjevic DMJCoicb. Cancer associated fibroblasts: is the force the path to the dark side? 2019; 56: 71–9.

Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM, Meyer MA, et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med. 2016;22(8):851–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A. 2013;110(50):20212–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shang S, Yang C, Chen F, Xiang RS, Zhang H, Dai SY, et al. ID1 expressing macrophages support cancer cell stemness and limit CD8(+) T cell infiltration in colorectal cancer. Nat Commun. 2023;14(1):7661.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao X, Shi J, He C, Bu X, Sun Y, Gao M, et al. ERK and USP5 govern PD-1 homeostasis via deubiquitination to modulate tumor immunotherapy. Nat Commun. 2023;14(1):2859.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang H, Zhang X, Lao M, Sun K, He L, Xu J, et al. Targeting ubiquitin-specific protease 8 sensitizes anti-programmed death-ligand 1 immunotherapy of pancreatic cancer. Cell Death Differ. 2023;30(2):560–75.

Article  CAS  PubMed  Google Scholar 

Xiong W, Gao X, Zhang T, Jiang B, Hu MM, Bu X, et al. USP8 inhibition reshapes an inflamed tumor microenvironment that potentiates the immunotherapy. Nat Commun. 2022;13(1):1700.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Chen B, Chen J, Su Z, Sun S. Deubiquitinase ubiquitin-specific peptidase 10 maintains cysteine rich angiogenic inducer 61 expression via Yes1 associated transcriptional regulator to augment immune escape and metastasis of pancreatic adenocarcinoma. Cancer Sci. 2022;113(5):1868–79.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu D, Xu R, Huang X, Tang Z, Tian Y, Zhang J, et al. Deubiquitinating enzyme OTUB1 promotes cancer cell immunosuppression via preventing ER-associated degradation of immune checkpoint protein PD-L1. Cell Death Differ. 2021;28(6):1773–89.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Fan Y, Jing X, Zhao L, Liu T, Wang L, et al. OTUD5-mediated deubiquitination of YAP in macrophage promotes M2 phenotype polarization and favors triple-negative breast cancer progression. Cancer Lett. 2021;504:104–15.

Article  CAS  PubMed  Google Scholar 

Zhan X, He Q, Sheng J, Jiang X, Lin L, Huang Y, et al. USP12 positively regulates M-MDSC function to inhibit antitumour immunity through deubiquitinating and stabilizing p65. Immunology. 2022;167(4):544–57.

Article  CAS  PubMed  Google Scholar 

Tie Y, Tang F, Wei YQ, Wei XW. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol. 2022;15(1):61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021;20(1):131.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Myers JAand Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol. 2021;18(2):85–100.

Article  Google Scholar 

Kursunel MAand Esendagli G. Corrigendum to The untold story of IFN-gamma in cancer biology [Cytokine Growth Factor Rev. 31 (2016) 73–81]. Cytokine Growth Factor Rev. 2017; 35: 97.

Zhao Q, Tong L, He N, Feng G, Leng L, Sun W, et al. IFN-gamma mediates graft-versus-breast cancer effects via enhancing cytotoxic T lymphocyte activity. Exp Ther Med. 2014;8(2):347–54.

Article  PubMed  PubMed Central  Google Scholar 

Singh P, Ravanan P, Talwar P. Death Associated protein kinase 1 (DAPK1): a Regulator of apoptosis and autophagy. Front Mol Neurosci. 2016;9:46.

Article  PubMed  PubMed Central  Google Scholar 

Guo Z, Zhou C, Zhou L, Wang Z, Zhu X, Mu XJCI. Overexpression of DAPK1-mediated inhibition of IKKβ/CSN5/PD-L1 axis enhances natural killer cell killing ability and inhibits tumor immune evasion in gastric cancer. 2022; 372: 104469.

Gonçalves Silva I, Yasinska IM, Sakhnevych SS, Fiedler W, Wellbrock J, Bardelli M, et al. The Tim-3-galectin-9 secretory pathway is involved in the Immune escape of human acute myeloid leukemia cells. EBioMedicine. 2017;22:44–57.

Article  PubMed  PubMed Central  Google Scholar 

Melaiu O, Lucarini V, Cifaldi L, Fruci D. Influence of the Tumor Microenvironment on NK cell function in solid tumors. Front Immunol. 2019;10:3038.

Article  CAS  PubMed  Google Scholar 

Li J, Yuan S, Norgard RJ, Yan F, Yamazoe T, Blanco A, et al. Tumor Cell-intrinsic USP22 suppresses Antitumor Immunity in Pancreatic Cancer. Cancer Immunol Res. 2020;8(3):282–91.

Article  CAS  PubMed  Google Scholar 

Boutilier AJand Elsawa SF. Macrophage polarization States in the Tumor Microenvironment. Int J Mol Sci. 2021; 22(13).

Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol. 2014;5:614.

Article  PubMed  PubMed Central  Google Scholar 

Pathria P, Louis TL, Varner JA. Targeting Tumor-Associated macrophages in Cancer. Trends Immunol. 2019;40(4):310–27.

留言 (0)

沒有登入
gif