nCoV-19 therapeutics using cucurbitacin I structural derivatives: an in silico approach

WHO coronavirus (covid-19) dashboard, (2023). https://covid19.who.int/.

Dong E, Du H, Gardner L (2020) An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 20:533–534. https://doi.org/10.1016/S1473-3099(20)30120-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scholkmann F, May C-A (2023) COVID-19, post-acute COVID-19 syndrome (PACS, “long COVID”) and post-COVID-19 vaccination syndrome (PCVS, “post-COVIDvac-syndrome”): similarities and differences. Pathol Res Pract 246:154497. https://doi.org/10.1016/j.prp.2023.154497

Article  PubMed  PubMed Central  Google Scholar 

Provost P (2023) The blind spot in COVID-19 vaccination policies: under-reported adverse events. Int J Vaccine Theory Pract Res 3:707–726. https://doi.org/10.56098/ijvtpr.v3i1.65

Article  Google Scholar 

Rafiq A, Jabeen T, Aslam S, Ahmad M, Ashfaq UA, Mohsin NUA, Zaki MEA, Al-Hussain SA (2023) A comprehensive update of various attempts by medicinal chemists to combat COVID-19 through natural products. Molecules 28:4860. https://doi.org/10.3390/molecules28124860

Article  CAS  PubMed  PubMed Central  Google Scholar 

Díaz MTB, Font R, Gómez P, Río Celestino MD (2020) Summer squash. Nutritional composition and antioxidant properties of fruits and vegetables. Elsevier, New York, pp 239–254. https://doi.org/10.1016/B978-0-12-812780-3.00014-3

Chapter  Google Scholar 

Kaur S, Panghal A, Garg MK, Mann S, Khatkar SK, Sharma P, Chhikara N (2019) Functional and nutraceutical properties of pumpkin: a review. Nutr Food Sci 50:384–401. https://doi.org/10.1108/NFS-05-2019-0143

Article  Google Scholar 

Jing N, Tweardy DJ (2005) Targeting Stat3 in cancer therapy. Anticancer Drugs 16:601–607. https://doi.org/10.1097/00001813-200507000-00002

Article  CAS  PubMed  Google Scholar 

Delgado-Tiburcio EE, Cadena-Iñiguez J, Santiago-Osorio E, Ruiz-Posadas LDM, Castillo-Juárez I, Aguiñiga-Sánchez I, Soto-Hernández M (2022) Pharmacokinetics and biological activity of cucurbitacins. Pharmaceuticals 15:1325. https://doi.org/10.3390/ph15111325

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blaskovich MA, Sun J, Cantor A, Turkson J, Jove R, Sebti SM (2003) Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Can Res 63:1270–1279

CAS  Google Scholar 

Alsayari A (2014) Anticancer and Antiviral Activities of Cucurbitacins Isolated From Cucumis Prophetarum var. Prophetarum Growing in the Southwestern Region of Saudi Arabia, Electronic Theses and Dissertations. 1985. https://openprairie.sdstate.edu/etd/1985

Jing S, Zou H, Wu Z, Ren L, Zhang T, Zhang J, Wei Z (2020) Cucurbitacins: bioactivities and synergistic effect with small-molecule drugs. J Funct Foods 72:104042. https://doi.org/10.1016/j.jff.2020.104042

Article  CAS  Google Scholar 

Hassan ST, Masarčíková R, Berchová K (2015) Bioactive natural products with anti-herpes simplex virus properties. J Pharm Pharmacol 67:1325–1336. https://doi.org/10.1111/jphp.12436

Article  CAS  PubMed  Google Scholar 

Hassan STS, Berchová-Bímová K, Petráš J, Hassan KTS (2017) Cucurbitacin B interacts synergistically with antibiotics against Staphylococcus aureus clinical isolates and exhibits antiviral activity against HSV-1. S Afr J Bot 108:90–94. https://doi.org/10.1016/j.sajb.2016.10.001

Article  CAS  Google Scholar 

Royster A, Ren S, Ma Y, Pintado M, Kahng E, Rowan S, Mir S, Mir M (2023) SARS-CoV-2 nucleocapsid protein is a potential therapeutic target for anticoronavirus drug discovery. Microbiol Spectrum 11:e01186-e1223. https://doi.org/10.1128/spectrum.01186-23

Article  CAS  Google Scholar 

Peng Y, Du N, Lei Y, Dorje S, Qi J, Luo T, Gao GF, Song H (2020) Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design. EMBO J 39:e105938. https://doi.org/10.15252/embj.2020105938

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vkovski P, Kratzel A, Steiner S, Stalder H, Thiel V (2021) Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 19(3):155–170. https://doi.org/10.1038/s41579-020-00468-6

Article  CAS  PubMed  Google Scholar 

Wu W, Cheng Y, Zhou H, Sun C, Zhang S (2023) The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics. Virol J 20:6. https://doi.org/10.1186/s12985-023-01968-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Padroni G, Bikaki M, Novakovic M, Wolter AC, Rüdisser SH, Gossert AD, Leitner A, Allain FH (2023) A hybrid structure determination approach to investigate the druggability of the nucleocapsid protein of SARS-CoV-2. Nucleic Acids Res 51:4555–4571. https://doi.org/10.1093/nar/gkad195

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yaron TM, Heaton BE, Levy TM, Johnson JL, Jordan TX, Cohen BM, Kerelsky A, Lin T-Y, Liberatore KM, Bulaon DK, Kastenhuber ER, Mercadante MN, Shobana-Ganesh K, He L, Schwartz RE, Chen S, Weinstein H, Elemento O, Piskounova E, Nilsson-Payant BE, Lee G, Trimarco JD, Burke KN, Hamele CE, Chaparian RR, Harding AT, Tata A, Zhu X, Tata PR, Smith CM, Possemato AP, Tkachev SL, Hornbeck PV, Beausoleil SA, Anand SK, Aguet F, Getz G, Davidson AD, Heesom K, Kavanagh-Williamson M, Matthews D, tenOever BR, Cantley LC, Blenis J, Heaton NS (2020) The FDA-approved drug Alectinib compromises SARS-CoV-2 nucleocapsid phosphorylation and inhibits viral infection in vitro. bioRxiv. https://doi.org/10.1101/2020.08.14.251207

Article  PubMed  PubMed Central  Google Scholar 

Suravajhala R, Parashar A, Choudhir G, Kumar A, Malik B, Nagaraj VA, Padmanaban G, Polavarapu R, Suravajhala P, Kishor PBK (2021) Molecular docking and dynamics studies of curcumin with COVID-19 proteins. Netw Model Anal Health Inf Bioinform 10:44. https://doi.org/10.1007/s13721-021-00312-8

Article  Google Scholar 

Husain I, Ahmad R, Siddiqui S, Chandra A, Misra A, Srivastava A, Ahamad T, Mohd F, Khan Z, Siddiqi A, Trivedi S, Upadhyay A, Gupta AN, Srivastava B, Ahmad S, Mehrotra S, Kant S, Mahdi AA, Mahdi F (2022) Structural interactions of phytoconstituent(s) from cinnamon, bay leaf, oregano, and parsley with SARS-CoV -2 nucleocapsid protein: a comparative assessment for development of potential antiviral nutraceuticals. J Food Biochem 46:e14262. https://doi.org/10.1111/jfbc.14262

Article  CAS  PubMed  Google Scholar 

Bhowmik D, Nandi R, Jagadeesan R, Kumar N, Prakash A, Kumar D (2020) Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. Infect Genet Evol 84:104451. https://doi.org/10.1016/j.meegid.2020.104451

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo C, Xu H, Li X, Yu J, Lin D (2023) Suramin disturbs the association of the N-terminal domain of SARS-CoV-2 nucleocapsid protein with RNA. Molecules 28:2534. https://doi.org/10.3390/molecules28062534

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kapoor N, Ghorai SM, Kushwaha PK, Shukla R, Aggarwal C, Bandichhor R (2020) Plausible mechanisms explaining the role of cucurbitacins as potential therapeutic drugs against coronavirus 2019. Inf Med Unlock 21:100484. https://doi.org/10.1016/j.imu.2020.100484

Article  Google Scholar 

Van De Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discovery 2:192–204. https://doi.org/10.1038/nrd1032

Article  PubMed  Google Scholar 

Louten J (2016) Virus replication. Essential Human Virology. Elsevier, New York, pp 49–70. https://doi.org/10.1016/B978-0-12-800947-5.00004-1

Chapter  Google Scholar 

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2023) PubChem 2023 update. Nucleic Acids Res 51(2023):D1373–D1380. https://doi.org/10.1093/nar/gkac956

Article  PubMed  Google Scholar 

O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. https://doi.org/10.1186/1758-2946-3-33

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan S, Chan HS, Hu Z (2017) Using PyMOL as a platform for computational drug design. Wiley Interdiscipl Rev Comput Mol Sci 7:e1298. https://doi.org/10.1002/wcms.1298

Article  CAS  Google Scholar 

Berman HM (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guedes IA, Barreto AMS, Marinho D, Krempser E, Kuenemann MA, Sperandio O, Dardenne LE, Miteva MA (2021) New machine learning and physics-based scoring functions for drug discovery. Sci Rep 11:3198. https://doi.org/10.1038/s41598-021-82410-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guedes IA, Costa LSC, Dos Santos KB, Karl ALM, Rocha GK, Teixeira IM, Galheigo MM, Medeiros V, Krempser E, Custódio FL, Barbosa HJC, Nicolás MF, Dardenne LE (2021) Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants. Sci Rep 11:5543. https://doi.org/10.1038/s41598-021-84700-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

Article  Google Scholar 

留言 (0)

沒有登入
gif