Natural product-inspired strategies towards the discovery of novel bioactive molecules

Scannell JW, Bosley J (2016) When quality beats quantity: decision theory, drug discovery, and the reproducibility crisis. PLoS ONE. https://doi.org/10.1371/journal.pone.0147215

Article  PubMed  PubMed Central  Google Scholar 

Santos R, Ursu O, Gaulton A et al (2017) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16:19–34. https://doi.org/10.1038/nrd.2016.230

Article  CAS  PubMed  Google Scholar 

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25. https://doi.org/10.1016/S0169-409X(96)00423-1

Article  CAS  Google Scholar 

Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341. https://doi.org/10.1016/j.ddtec.2004.11.007

Article  CAS  PubMed  Google Scholar 

Dandapani S, Marcaurelle LA (2010) Grand challenge commentary: accessing new chemical space for “undruggable” targets. Nat Chem Biol 6:861–863. https://doi.org/10.1038/nchembio.479

Article  CAS  PubMed  Google Scholar 

Kodadek T (2011) The rise, fall and reinvention of combinatorial chemistry. Chem Commun 47:9757–9763. https://doi.org/10.1039/c1cc12102b

Article  CAS  Google Scholar 

Borman S (2002) Combinatorial chemistry. Chem Eng News 80:43–57. https://doi.org/10.1021/cen-v080n045.p043

Article  Google Scholar 

Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335. https://doi.org/10.1021/np200906s

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feher M, Schmidt JM (2003) Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 43:218–227. https://doi.org/10.1021/ci0200467

Article  CAS  PubMed  Google Scholar 

Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA) - General Subjects 1830:3670–3695. https://doi.org/10.1016/J.BBAGEN.2013.02.008

Article  CAS  PubMed  Google Scholar 

Hong J (2011) Role of natural product diversity in chemical biology. Curr Opin Chem Biol 15:350–354. https://doi.org/10.1016/J.CBPA.2011.03.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosén J, Gottfries J, Muresan S, Backlund A, Oprea TI (2009) Novel chemical space exploration via natural products. J Med Chem 52:1953–1962. https://doi.org/10.1021/jm801514w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Henkel T, Brunne RM, Müller H, Reichel F (1999) Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew Chem Int Ed 38:643–647. https://doi.org/10.1002/(SICI)1521-3773(19990301)38:5%3C643::AID-ANIE643%3E3.0.CO;2-G

Article  CAS  Google Scholar 

Barelier S, Eidam O, Fish I, Hollander J, Figaroa F, Nachane R, Irwin JJ, Shoichet BK, Siegal G (2014) Increasing chemical space coverage by combining empirical and computational fragment screens. ACS Chem Biol 9:1528–1535. https://doi.org/10.1021/cb5001636

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432:829–837. https://doi.org/10.1038/nature03194

Article  CAS  PubMed  Google Scholar 

Galloway WRJD, Isidro-Llobet A, Spring DR (2010) Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat Commun 1:1–13. https://doi.org/10.1038/ncomms1081

Article  CAS  Google Scholar 

Spring DR (2003) Diversity-oriented synthesis; a challenge for synthetic chemists. Org Biomol Chem 1:3867–3870. https://doi.org/10.1039/b310752n

Article  CAS  PubMed  Google Scholar 

Burke MD, Schreiber SL (2004) A planning strategy for diversity-oriented synthesis. Angew Chem Int Ed 43:46–58. https://doi.org/10.1002/anie.200300626

Article  CAS  Google Scholar 

Burke MD, Lalic G (2002) Teaching target-oriented and diversity-oriented organic synthesis at Harvard University. Chem Biol 9:535–541. https://doi.org/10.1016/S1074-5521(02)00143-6

Article  CAS  PubMed  Google Scholar 

Galloway WRJD, Bender A, Welch M, Spring DR (2009) The discovery of antibacterial agents using diversity-oriented synthesis. Chem Commun. https://doi.org/10.1039/B816852K

Article  Google Scholar 

Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nat Rev Drug Discov 3:301–317. https://doi.org/10.1038/nrd1343

Article  CAS  PubMed  Google Scholar 

Surade S, Blundell TL (2012) Structural biology and drug discovery of difficult targets: the limits of ligandability. Chem Biol 19:42–50. https://doi.org/10.1016/J.CHEMBIOL.2011.12.013

Article  CAS  PubMed  Google Scholar 

Jiang J, Hui C (2008) Hedgehog signaling in development and cancer. Dev Cell 15:801–812. https://doi.org/10.1016/J.DEVCEL.2008.11.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo HW (2016) Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers (Basel) 8:1–23. https://doi.org/10.3390/cancers8020022

Article  CAS  Google Scholar 

O’Connor CJ, Beckmann HSG, Spring DR (2012) Diversity-oriented synthesis: producing chemical tools for dissecting biology. Chem Soc Rev 41:4444–4456. https://doi.org/10.1039/C2CS35023H

Article  PubMed  Google Scholar 

Peng LF, Stanton BZ, Maloof N, Wang X, Schreiber SL (2009) Syntheses of aminoalcohol-derived macrocycles leading to a small-molecule binder to and inhibitor of Sonic Hedgehog. Bioorg Med Chem Lett 19:6319–6325. https://doi.org/10.1016/J.BMCL.2009.09.089

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stanton BZ, Peng LF, Maloof N et al (2009) A small molecule that binds Hedgehog and blocks its signaling in human cells. Nat Chem Biol 5:154–156. https://doi.org/10.1038/nchembio.142

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thomas GL, Spandl RJ, Glansdorp FG et al (2008) Anti-MRSA agent discovery using diversity-oriented synthesis. Angew Chem Int Ed 47:2808–2812. https://doi.org/10.1002/anie.200705415

Article  CAS  Google Scholar 

Fernandes P (2006) Antibacterial discovery and development—the failure of success? Nat Biotechnol 24:1497–1503. https://doi.org/10.1038/nbt1206-1497

Article  CAS  PubMed  Google Scholar 

Ash C (1996) Antibiotic resistance: the new apocalypse? Trends Microbiol 4:371–372. https://doi.org/10.1016/0966-842X(96)30028-0

Article  CAS  PubMed  Google Scholar 

Sun Y, Zhang J, Zhang Y, Liu J, van der Veen S, Duttwyler S (2018) The closo-dodecaborate dianion fused with oxazoles provides 3D diboraheterocycles with selective antimicrobial activity. Chem Eur J 24:10364–10371. https://doi.org/10.1002/chem.201801602

Article  CAS  PubMed  Google Scholar 

Tietze LF, Bell HP, Chandrasekhar S (2003) Natural product hybrids as new leads for drug discovery. Angew Chem Int Ed 42:3996–4028. https://doi.org/10.1002/anie.200200553

Article  CAS  Google Scholar 

Mehta G, Singh V (2002) Hybrid systems through natural product leads: an approach towards new molecular entities. Chem Soc Rev 31:324–334. https://doi.org/10.1039/b204748a

Article  CAS  PubMed  Google Scholar 

Soosay Raj TA, Smith AM, Moore AS (2013) Vincristine sulfate liposomal injection for acute lymphoblastic leukemia. Int J Nanomed 8:4361–4369. https://doi.org/10.2147/IJN.S54657

Article  CAS  Google Scholar 

Song KM, Park SW, Hong WH, Lee H, Kwak SS, Liu JR (1992) Isolation of vindoline from Catharanthus roseus by supercritical fluid extraction. Biotechnol Prog 8:583–586. https://doi.org/10.1021/bp00018a018

Article  CAS  PubMed  Google Scholar 

Arias HR, Feuerbach D, Targowska-Duda KM, Jozwiak K (2010) Catharanthine alkaloids are noncompetitive antagonists of muscle-type nicotinic acetylcholine receptors. Neurochem Int 57:153–161. https://doi.org/10.1016/J.NEUINT.2010.05.007

留言 (0)

沒有登入
gif