Exercise training decreases lactylation and prevents myocardial ischemia–reperfusion injury by inhibiting YTHDF2

Bei Y, Huang Z, Feng X, Li L, Wei M, Zhu Y, Liu S, Chen C, Yin M, Jiang H, Xiao J (2022) Lymphangiogenesis contributes to exercise-induced physiological cardiac growth. J Sport Health Sci 11:466–478. https://doi.org/10.1016/j.jshs.2022.02.005

Article  PubMed  PubMed Central  Google Scholar 

Bei Y, Pan LL, Zhou Q, Zhao C, Xie Y, Wu C, Meng X, Gu H, Xu J, Zhou L, Sluijter JPG, Das S, Agerberth B, Sun J, Xiao J (2019) Cathelicidin-related antimicrobial peptide protects against myocardial ischemia/reperfusion injury. BMC Med 17:42. https://doi.org/10.1186/s12916-019-1268-y

Article  PubMed  PubMed Central  Google Scholar 

Bei Y, Wang L, Ding R, Che L, Fan Z, Gao W, Liang Q, Lin S, Liu S, Lu X, Shen Y, Wu G, Yang J, Zhang G, Zhao W, Guo L, Xiao J (2021) Animal exercise studies in cardiovascular research: current knowledge and optimal design-A position paper of the Committee on Cardiac Rehabilitation, Chinese Medical Doctors’ Association. J Sport Health Sci 10:660–674. https://doi.org/10.1016/j.jshs.2021.08.002

Article  PubMed  PubMed Central  Google Scholar 

Bernardo BC, Ooi JYY, Weeks KL, Patterson NL, McMullen JR (2018) Understanding key mechanisms of exercise-induced cardiac protection to mitigate disease: current knowledge and emerging concepts. Physiol Rev 98:419–475. https://doi.org/10.1152/physrev.00043.2016

Article  CAS  PubMed  Google Scholar 

Bostrom P, Mann N, Wu J, Quintero PA, Plovie ER, Panakova D, Gupta RK, Xiao C, MacRae CA, Rosenzweig A, Spiegelman BM (2010) C/EBPbeta controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 143:1072–1083. https://doi.org/10.1016/j.cell.2010.11.036

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang K, Marran K, Valentine A, Hannon GJ (2013) Creating an miR30-based shRNA vector. Cold Spring Harb Protoc 2013:631–635. https://doi.org/10.1101/pdb.prot075853

Article  PubMed  Google Scholar 

Chen S, Cao X, Zhang J, Wu W, Zhang B, Zhao F (2022) circVAMP3 drives CAPRIN1 phase separation and inhibits hepatocellular carcinoma by suppressing c-Myc translation. Adv Sci (Weinh). https://doi.org/10.1002/advs.202103817

Article  PubMed  PubMed Central  Google Scholar 

Chen X, Zhou X, Wang X (2022) m(6)A binding protein YTHDF2 in cancer. Exp Hematol Oncol 11:21. https://doi.org/10.1186/s40164-022-00269-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chow LS, Gerszten RE, Taylor JM, Pedersen BK, van Praag H, Trappe S, Febbraio MA, Galis ZS, Gao Y, Haus JM, Lanza IR, Lavie CJ, Lee CH, Lucia A, Moro C, Pandey A, Robbins JM, Stanford KI, Thackray AE, Villeda S, Watt MJ, Xia A, Zierath JR, Goodpaster BH, Snyder MP (2022) Exerkines in health, resilience and disease. Nat Rev Endocrinol 18:273–289. https://doi.org/10.1038/s41574-022-00641-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai X, Lv X, Thompson EW, Ostrikov KK (2022) Histone lactylation: epigenetic mark of glycolytic switch. Trends Genet 38:124–127. https://doi.org/10.1016/j.tig.2021.09.009

Article  CAS  PubMed  Google Scholar 

Deng X, Qing Y, Horne D, Huang H, Chen J (2023) The roles and implications of RNA m(6)A modification in cancer. Nat Rev Clin Oncol 20:507–526. https://doi.org/10.1038/s41571-023-00774-x

Article  CAS  PubMed  Google Scholar 

Dou X, Huang L, Xiao Y, Liu C, Li Y, Zhang X, Yu L, Zhao R, Yang L, Chen C, Yu X, Gao B, Qi M, Gao Y, Shen B, Sun S, He C, Liu J (2023) METTL14 is a chromatin regulator independent of its RNA N6-methyladenosine methyltransferase activity. Protein Cell 14:683–697. https://doi.org/10.1093/procel/pwad009

Article  PubMed  PubMed Central  Google Scholar 

Fan M, Yang K, Wang X, Chen L, Gill PS, Ha T, Liu L, Lewis NH, Williams DL, Li C (2023) Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction. Sci Adv 9:eadc9465. https://doi.org/10.1126/sciadv.adc9465

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang R, Chen X, Zhang S, Shi H, Ye Y, Shi H, Zou Z, Li P, Guo Q, Ma L, He C, Huang S (2021) EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nat Commun 12:177. https://doi.org/10.1038/s41467-020-20379-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flamand MN, Tegowski M, Meyer KD (2023) The proteins of mRNA modification: writers, readers, and erasers. Annu Rev Biochem 92:145–173. https://doi.org/10.1146/annurev-biochem-052521-035330

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franzago M, Pilenzi L, Di Rado S, Vitacolonna E, Stuppia L (2022) The epigenetic aging, obesity, and lifestyle. Front Cell Dev Biol 10:985274. https://doi.org/10.3389/fcell.2022.985274

Article  PubMed  PubMed Central  Google Scholar 

Fu Y, Zhuang X (2020) m(6)A-binding YTHDF proteins promote stress granule formation. Nat Chem Biol 16:955–963. https://doi.org/10.1038/s41589-020-0524-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaffney DO, Jennings EQ, Anderson CC, Marentette JO, Shi T, Schou Oxvig AM, Streeter MD, Johannsen M, Spiegel DA, Chapman E, Roede JR, Galligan JJ (2020) Non-enzymatic lysine lactoylation of glycolytic enzymes. Cell Chem Biol 27(206–213):e206. https://doi.org/10.1016/j.chembiol.2019.11.005

Article  CAS  Google Scholar 

Gao R, Wang L, Bei Y, Wu X, Wang J, Zhou Q, Tao L, Das S, Li X, Xiao J (2021) Long noncoding RNA cardiac physiological hypertrophy-associated regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury. Circulation 144:303–317. https://doi.org/10.1161/CIRCULATIONAHA.120.050446

Article  CAS  PubMed  Google Scholar 

Gatsiou A, Stellos K (2023) RNA modifications in cardiovascular health and disease. Nat Rev Cardiol 20:325–346. https://doi.org/10.1038/s41569-022-00804-8

Article  CAS  PubMed  Google Scholar 

Ge Y, Jin J, Li J, Ye M, Jin X (2022) The roles of G3BP1 in human diseases (review). Gene 821:146294. https://doi.org/10.1016/j.gene.2022.146294

Article  CAS  PubMed  Google Scholar 

Gibb AA, Hill BG (2018) Metabolic coordination of physiological and pathological cardiac remodeling. Circ Res 123:107–128. https://doi.org/10.1161/CIRCRESAHA.118.312017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gilbert WV, Nachtergaele S (2023) mRNA regulation by RNA modifications. Annu Rev Biochem 92:175–198. https://doi.org/10.1146/annurev-biochem-052521-035949

Article  CAS  PubMed  Google Scholar 

Glancy B, Kane DA, Kavazis AN, Goodwin ML, Willis WT, Gladden LB (2021) Mitochondrial lactate metabolism: history and implications for exercise and disease. J Physiol 599:863–888. https://doi.org/10.1113/JP278930

Article  CAS  PubMed  Google Scholar 

Goodwin GW, Taegtmeyer H (2000) Improved energy homeostasis of the heart in the metabolic state of exercise. Am J Physiol Heart Circ Physiol 279:H1490-1501. https://doi.org/10.1152/ajpheart.2000.279.4.H1490

Article  CAS  PubMed  Google Scholar 

He M, Yang Z, Abdellatif M, Sayed D (2015) GTPase activating protein (Sh3 Domain) binding protein 1 regulates the processing of microRNA-1 during cardiac hypertrophy. PLoS ONE 10:e0145112. https://doi.org/10.1371/journal.pone.0145112

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hesser CR, Karijolich J, Dominissini D, He C, Glaunsinger BA (2018) N6-methyladenosine modification and the YTHDF2 reader protein play cell type specific roles in lytic viral gene expression during Kaposi’s sarcoma-associated herpesvirus infection. PLoS Pathog 14:e1006995. https://doi.org/10.1371/journal.ppat.1006995

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heusch G (2020) Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 17:773–789. https://doi.org/10.1038/s41569-020-0403-y

Article  PubMed  Google Scholar 

Heusch G (2024) Myocardial ischemia/reperfusion: Translational pathophysiology of ischemic heart disease. Med 5:10–31. https://doi.org/10.1016/j.medj.2023.12.007

Article  CAS  PubMed  Google Scholar 

Hou G, Zhao X, Li L, Yang Q, Liu X, Huang C, Lu R, Chen R, Wang Y, Jiang B, Yu J (2021) SUMOylation of YTHDF2 promotes mRNA degradation and cancer progression by increasing its binding affinity with m6A-modified mRNAs. Nucleic Acids Res 49:2859–2877. https://doi.org/10.1093/nar/gkab065

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou J, Zhang H, Liu J, Zhao Z, Wang J, Lu Z, Hu B, Zhou J, Zhao Z, Feng M, Zhang H, Shen B, Huang X, Sun B, Smyth MJ, He C, Xia Q (2019) YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma. Mol Cancer 18:163. https://doi.org/10.1186/s12943-019-1082-3

Article  CAS 

留言 (0)

沒有登入
gif