Tumor-associated fibrosis: a unique mechanism promoting ovarian cancer metastasis and peritoneal dissemination

Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(1), 7–30. https://doi.org/10.3322/caac.21590

Article  PubMed  Google Scholar 

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

Article  PubMed  Google Scholar 

Buy, J. N., Moss, A. A., Ghossain, M. A., Sciot, C., Malbec, L., Vadrot, D., … Decroix, Y. (1988). Peritoneal implants from ovarian tumors: CT findings. Radiology, 169(3), 691–694. https://doi.org/10.1148/radiology.169.3.3186993

Arie, A. B., McNally, L., Kapp, D. S., & Teng, N. N. H. (2013). The omentum and omentectomy in epithelial ovarian cancer: A reappraisal: Part II—The role of omentectomy in the staging and treatment of apparent early stage epithelial ovarian cancer. Gynecologic oncology, 131(3), 784–790. https://doi.org/10.1016/j.ygyno.2013.09.013

Article  PubMed  Google Scholar 

Ben Arie, A., McNally, L., Kapp, D. S., & Teng, N. N. H. (2013). The omentum and omentectomy in epithelial ovarian cancer: A reappraisal. Part I—Omental function and history of omentectomy. Gynecologic oncology, 131(3), 780–783. https://doi.org/10.1016/j.ygyno.2013.09.014

Article  PubMed  Google Scholar 

Heintz, A. P. M., Odicino, F., Maisonneuve, P., Quinn, M. A., Benedet, J. L., Creasman, W. T., … Beller, U. (2006). Carcinoma of the ovary. FIGO 26th annual report on the results of treatment in gynecological cancer. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics, 95 Suppl 1, S161–92. https://doi.org/10.1016/S0020-7292(06)60033-7

Amate, P., Huchon, C., Dessapt, A. L., Bensaid, C., Medioni, J., Le Frère Belda, M.-A., … Lécuru, F. R. (2013). Ovarian cancer: Sites of recurrence. International journal of gynecological cancer: official journal of the International Gynecological Cancer Society, 23(9), 1590–1596. https://doi.org/10.1097/IGC.0000000000000007

Gaitskell, K., Hermon, C., Barnes, I., Pirie, K., Floud, S., Green, J., … Reeves, G. K. (2022). Ovarian cancer survival by stage, histotype, and pre-diagnostic lifestyle factors, in the prospective UK Million Women Study. Cancer epidemiology, 76(102074), 102074. https://doi.org/10.1016/j.canep.2021.102074

Cancer Genome Atlas Research Network. (2011). Integrated genomic analyses of ovarian carcinoma. Nature, 474(7353), 609–615. https://doi.org/10.1038/nature10166

Article  CAS  Google Scholar 

Tothill, R. W., Tinker, A. V., George, J., Brown, R., Fox, S. B., Lade, S., … Bowtell, D. D. L. (2008). Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clinical cancer research: an official journal of the American Association for Cancer Research, 14(16), 5198–5208. https://doi.org/10.1158/1078-0432.CCR-08-0196

Vargas, H. A., Miccò, M., Hong, S. I., Goldman, D. A., Dao, F., Weigelt, B., … Sala, E. (2015). Association between morphologic CT imaging traits and prognostically relevant gene signatures in women with high-grade serous ovarian cancer: a hypothesis-generating study. Radiology, 274(3), 742–751. https://doi.org/10.1148/radiol.14141477

Zhang, Q., Wang, C., & Cliby, W. A. (2019). Cancer-associated stroma significantly contributes to the mesenchymal subtype signature of serous ovarian cancer. Gynecologic Oncology, 152(2), 368–374. https://doi.org/10.1016/j.ygyno.2018.11.014

Article  CAS  PubMed  Google Scholar 

Xu, S., Xu, H., Wang, W., Li, S., Li, H., Li, T., … Liu, L. (2019). The role of collagen in cancer: from bench to bedside. Journal of Translational Medicine, 17(1), 309. https://doi.org/10.1186/s12967-019-2058-1

Rybinski, B., Franco-Barraza, J., & Cukierman, E. (2014). The wound healing, chronic fibrosis, and cancer progression triad. Physiological Genomics, 46(7), 223–244. https://doi.org/10.1152/physiolgenomics.00158.2013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Byun, J. S., & Gardner, K. (2013). Wounds that will not heal: Pervasive cellular reprogramming in cancer. The American Journal of Pathology, 182(4), 1055–1064. https://doi.org/10.1016/j.ajpath.2013.01.009

Article  PubMed  PubMed Central  Google Scholar 

Sundaram, G. M., Quah, S., & Sampath, P. (2018). Cancer: The dark side of wound healing. The FEBS Journal, 285(24), 4516–4534. https://doi.org/10.1111/febs.14586

Article  CAS  PubMed  Google Scholar 

MacCarthy-Morrogh, L., & Martin, P. (2020). The hallmarks of cancer are also the hallmarks of wound healing. Science Signaling, 13(648), eaay8690. https://doi.org/10.1126/scisignal.aay8690

Article  CAS  PubMed  Google Scholar 

Haddow, A. (1972). Molecular repair, wound healing, and carcinogenesis: Tumor production a possible overhealing? Advances in Cancer Research, 16, 181–234. https://doi.org/10.1016/s0065-230x(08)60341-3

Article  CAS  PubMed  Google Scholar 

Schäfer, M., & Werner, S. (2008). Cancer as an overhealing wound: An old hypothesis revisited. Nature reviews. Molecular Cell Biology, 9(8), 628–638. https://doi.org/10.1038/nrm2455

Article  CAS  PubMed  Google Scholar 

Balkwill, F. R., Capasso, M., & Hagemann, T. (2012). The tumor microenvironment at a glance. Journal of Cell Science, 125(Pt 23), 5591–5596. https://doi.org/10.1242/jcs.116392

Article  CAS  PubMed  Google Scholar 

Huet, E., Jaroz, C., Nguyen, H. Q., Belkacemi, Y., de la Taille, A., Stavrinides, V., & Whitaker, H. (2019). Stroma in normal and cancer wound healing. The FEBS Journal, 286(15), 2909–2920. https://doi.org/10.1111/febs.14842

Article  CAS  PubMed  Google Scholar 

Erdogan, B., & Webb, D. J. (2017). Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochemical Society Transactions, 45(1), 229–236. https://doi.org/10.1042/bst20160387

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ricciardelli, C., & Rodgers, R. J. (2006). Extracellular matrix of ovarian tumors. Seminars in Reproductive Medicine, 24(4), 270–282. https://doi.org/10.1055/s-2006-948556

Article  CAS  PubMed  Google Scholar 

Lu, P., Takai, K., Weaver, V. M., & Werb, Z. (2011). Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspectives in Biology, 3(12), a005058–a005058. https://doi.org/10.1101/cshperspect.a005058

Article  PubMed  PubMed Central  Google Scholar 

Kessenbrock, K., Plaks, V., & Werb, Z. (2010). Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell, 141(1), 52–67. https://doi.org/10.1016/j.cell.2010.03.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carey, P., Low, E., Harper, E., & Stack, M. S. (2021). Metalloproteinases in ovarian cancer. International Journal of Molecular Sciences, 22(7), 3403. https://doi.org/10.3390/ijms22073403

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Alem, L., & Curry, T. E., Jr. (2015). Ovarian cancer: Involvement of the matrix metalloproteinases. Reproduction, 150(2), R55-64. https://doi.org/10.1530/REP-14-0546

Article  CAS  PubMed  PubMed Central  Google Scholar 

Belotti, D., Paganoni, P., Manenti, L., Garofalo, A., Marchini, S., Taraboletti, G., & Giavazzi, R. (2003). Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer research, 63(17), 5224–5229. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/14500349. Accessed 22 Aug 2023

Mott, J. D., & Werb, Z. (2004). Regulation of matrix biology by matrix metalloproteinases. Current Opinion in Cell Biology, 16(5), 558–564. https://doi.org/10.1016/j.ceb.2004.07.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, Q., & Stamenkovic, I. (2000). Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes & Development, 14(2), 163–176. https://doi.org/10.1101/gad.14.2.163

Article  Google Scholar 

Cai, L., Xiong, X., Kong, X., & Xie, J. (2017). The role of the lysyl oxidases in tissue repair and remodeling: A concise review. Tissue Engineering and Regenerative Medicine, 14(1), 15–30. https://doi.org/10.1007/s13770-016-0007-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Setargew, Y. F. I., Wyllie, K., Grant, R. D., Chitty, J. L., & Cox, T. R. (2021). Targeting lysyl oxidase family meditated matrix cross-linking as an anti-stromal therapy in solid tumours. Cancers, 13(3), 491. https://doi.org/10.3390/cancers13030491

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Donato, M., Petrillo, M., Martinelli, E., Filippetti, F., Zannoni, G. F., Scambia, G., & Gallo, D. (2017). Uncovering the role of nuclear Lysyl oxidase (LOX) in advanced high grade serous ovarian cancer. Gynecologic Oncology, 146(1), 170–178. https://doi.org/10.1016/j.ygyno.2017.05.001

Article  CAS  PubMed  Google Scholar 

Ji, F., Wang, Y., Qiu, L., Li, S., Zhu, J., Liang, Z., … Di, W. (2013). Hypoxia inducible factor 1α-mediated LOX expression correlates with migration and invasion in epithelial ovarian cancer. International Journal of Oncology, 42(5), 1578–1588. https://doi.org/10.3892/ijo.2013.1878

Wang, Y., Ma, J., Shen, H., Wang, C., Sun, Y., Howell, S. B., & Lin, X. (2014). Reactive oxygen species promote ovarian cancer progression via the HIF-1α/LOX/E-cadherin pathway. Oncology Reports, 32(5), 2150–2158. https://doi.org/10.3892/or.2014.3448

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye, M., Zhou, J., Gao, Y., Pan, S., & Zhu, X. (2020). The prognostic value of the lysyl oxidase family in ovarian cancer. Journal of Clinical Laboratory Analysis, 34(12), e23538. https://doi.org/10.1002/jcla.23538

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ishihara, S., & Haga, H. (2022). Matrix stiffness contributes to cancer progression by regulating transcription factors. Cancers, 14(4), 1049. https://doi.org/10.3390/cancers14041049

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ouellette, J. N., Drifka, C. R., Pointer, K. B., Liu, Y., Lieberthal, T. J., Kao, W. J., … Eliceiri, K. W. (2021). Navigating the collagen jungle: The biomedical potential of fiber organization in cancer. Bioengineering (Basel, Switzerland), 8(2), 17. https://doi.org/10.3390/bioengineering8020017

Ricard-Blum, S. (2011). The collagen family. Cold Spring Harbor Perspectives in Biology, 3(1), a004978. https://doi.org/10.1101/cshperspect.a004978

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif