Design and Characterization of Anticancer Peptides Derived from Snake Venom Metalloproteinase Library

Abdou YT, Saleeb SM, Abdel-Raouf KMA, Allam M, Adel M, Amleh A (2023) Characterization of a novel peptide mined from the Red Sea brine pools and modified to enhance its anticancer activity. BMC Cancer 23(1):699

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agrawal P, Bhagat D, Mahalwal M, Sharma N, Raghava GPS (2021) AntiCP 2.0: an updated model for predicting anticancer peptides. Brief Bioinform 22(3):bbaa153

Article  PubMed  Google Scholar 

Al Musaimi O, Valenzo OMM, Williams DR (2023) Prediction of peptides retention behavior in reversed-phase liquid chromatography based on their hydrophobicity. J Sep Sci 46:e2200743

Article  PubMed  Google Scholar 

Bakare OO, Gokul A, Wu R, Niekerk LA, Klein A, Keyster M (2021) Biomedical relevance of novel anticancer peptides in the sensitive treatment of cancer. Biomolecules 11(8):1120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bouwmeester R, Gabriels R, Hulstaert N, Martens L (2021) Degroeve. DeepLC can predict retention times for peptides that carry as-yet unseen modifications. Nat Methods 18:1363–1369

Article  PubMed  Google Scholar 

Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV, Christie CH, Dalenberg K, Di Costanzo L, Duarte JM, Dutta S, Feng Z, Ganesan S, Goodsell DS, Ghosh S, Green RK, Guranović V, Guzenko D, Hudson BP, Lawson CL, Liang Y, Lowe R, Namkoong H, Peisach E, Persikova I, Randle C, Rose A, Rose Y, Sali A, Segura J, Sekharan M, Shao C, Tao YP, Voigt M, Westbrook JD, Young JY, Zardecki C (2021) Zhuravleva. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res 49:D437–D451

Article  CAS  PubMed  Google Scholar 

Chan DI, Prenner EJ, Vogel HJ (2006) Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biohim Biophys Acta 1758(9):1184–1202

Article  CAS  Google Scholar 

Chang L, Bao H, Yao J, Liu H, Gou S, Zhong C, Zhang Y, Ni J (2021) New designed pH-responsive histidine-rich peptides with antitumor activity. J Drug Target 29(6):651–659

Article  CAS  PubMed  Google Scholar 

Chang L, Wu X, Ran K, Tian Y, Ouyang X, Liu H, Gou S, Zhang Y, Ni J (2023) One new acid-activated hybrid anticancer peptide by coupling with a desirable ph-sensitive anionic partner peptide. ACS Omega 8(8):7536–7545

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chellapandi P (2010) Pharmacological perspectives of snake venoms from Viperidae family. Internet J Pharmacol 8(2)

Chellapandi P (2014) Structural evaluation of snake venom metalloproteinases and their therapeutic uses. Mini Rev Org Chem 11:28–44

Article  CAS  Google Scholar 

Chellapandi P, Jebakumar SRD (2008) Purification and antibacterial activity of Indian cobra and viper venoms. Electron J Biol 4:11–16

Google Scholar 

Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS (2007) Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob Agents Chemother 51:1398–1406

Article  CAS  PubMed  Google Scholar 

Chiangjong W, Chutipongtanate S, Hongeng S (2020) Anticancer peptide: physicochemical property, functional aspect and trend in clinical application (review). Int J Oncol 57(3):678–696

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: A sequence logo generator. Genome Res 14(6):1188–1190

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dalzini A, Bergamini C, Biondi B, De Zotti M, Panighel G, Fato R, Peggion C, Bortolus M, Maniero AL (2016) The rational search for selective anticancer derivatives of the peptide trichogin GA IV: a multi-technique biophysical approach. Sci Rep 6:24000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edwards IA, Elliott AG, Kavanagh AM, Zuegg J, Blaskovich MAT (2016) Cooper, contribution of amphipathicity and hydrophobicity to the antimicrobial activity and cytotoxicity of β-hairpin peptides. ACS Infect Dis 2:442–450

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Aziz TMA, Garcia Soares A, Stockand JD (2019) Snake venoms in drug discovery: valuable therapeutic tools for life saving, toxins (Basel). 11(10):564

Fu C, Yu L, Miao Y, Liu X, Yu Z, Wei M (2023) Peptide-drug conjugates (PDCs): a novel trend of research and development on targeted therapy, hype or hope? Acta Pharm Sin B 13(2):498–516

Article  CAS  PubMed  Google Scholar 

Gabernet G, Müller AT, Hiss JA (2016) Schneider G. Membranolytic Anticancer Peptides. Med Chem Comm 7:2232–2245

Article  CAS  Google Scholar 

Gaspar D, Veiga AS (2013) Castanho M. A. R. B. from Antimicrobial to anticancer peptides. Rev Front Microbiol 4:294

Google Scholar 

Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the expasy server;(in). In: John M, Walker (eds) The Proteomics protocols Handbook. Humana, pp 571–607

Gautam A, Chaudhary K, Kumar R, Sharma A, Kapoor P, Tyagi A (2013) Open source drug discovery consortium; Raghava GP. In silico approaches for designing highly effective cell penetrating peptides. J Transl Med 11:74

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gautam A, Chaudhary K, Kumar R, Raghava GP (2015) Computer-aided virtual screening and designing of cell-penetrating peptides. Methods Mol Biol 1324:59–69

Article  PubMed  Google Scholar 

Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Open Source Drug Discovery Consortium, Raghava GP (2013) Silico approach for predicting toxicity of peptides and proteins. PLoS ONE 8(9):e73957

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han Y, Zhang M, Lai R, Zhang Z (2021) Chemical modifications to increase the therapeutic potential of antimicrobial peptides. Peptides 146:0170666

Article  CAS  Google Scholar 

Haug BE, Camilio KA, Eliassen LT, Stensen W, Svendsen JS, Berg K, Mortensen B, Serin G, Mirjolet JF, Bichat F (2016) Rekdal, discovery of a 9-mer cationic peptide (ltx-315) as a potential first in class oncolytic peptide. J Med Chem 59(7):2918–2927

Article  CAS  PubMed  Google Scholar 

Hawrani A, Howe RA, Walsh TR (2008) Dempsey, origin of low mammalian cell toxicity in a class of highly active antimicrobial amphipathic helical peptides. J Biol Chem 283:18636–18645

Article  CAS  PubMed  Google Scholar 

Huan Y, Kong Q, Mou H, Yi H (2020) Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol 11:582779

Article  PubMed  PubMed Central  Google Scholar 

Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1(2):143–152

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang YB, Wang XF, Wang HY, Liu Y, Chen Y (2011) Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Mol Cancer Ther 10(3):416–426

Article  CAS  PubMed  Google Scholar 

Huang KY, Tseng YJ, Kao HJ, Chen CH, Yang HH, Weng SL (2021) Identification of subtypes of anticancer peptides based on sequential features and physicochemical properties. Sci Rep 11(1):13594

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hwang JS, Kim SG, Shin TH, Jang YE, Kwon DH, Lee G (2022) Development of anticancer peptides using artificial intelligence and combinational therapy for cancer therapeutics. Pharmaceutics 14(5):997

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ishikawa K, Medina SH, Schneider JP, Klar AJS (2017) Glycan Alteration imparts Cellular Resistance to a membrane-lytic anticancer peptide. Cell Chem Biol 24:149–158

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang Z, Vasil AI, Gera L, Vasil ML, Hodges RS (2011) Rational design of α-helical antimicrobial peptides to target gram-negative pathogens, acinetobacter baumannii and pseudomonas aeruginosa: utilization of charge, specificity determinants, total hydrophobicity, hydrophobe type and location as design para. Chem Biol Drug Des 77:225–240

Article  PubMed  PubMed Central  Google Scholar 

Jindal MH, Le CF, Mohd Yusof MY, Sekaran SD (2014) Net charge, hydrophobicity and specific amino acids contribute to the activity of antimicrobial peptides. JUMMEC 17 (1)

Kalajirao S, Ramakrishnan SA, Palanimuthu VR (2023) Predicting, designing, characterization and evaluation of a new novel anticancer peptide SSVAM-9 against the lung carcinoma, an insilico approach. J Med Pharm Allied Sci 12(2):5706–5712

Article  Google Scholar 

Karami MF, Babakhaniyan K, Zokaei M, Yaghoubian A, Akbari S, Khorsandi M, Soofi A, Nabi-Afjadi M, Zalpoor H, Jalalifar F, Azargoonjahromi A, Payandeh Z (2022) Alagheband Bahrami, anti-cancer peptide-based therapeutic strategies in solid tumors, cell mol. Biol Lett 27(1):33

Google Scholar 

Koo DJ, Sut TN, Tan SW, Yoon BKJA, Jackman (2022) Biophysical characterization of ltx-315 anticancer peptide interactions with model membrane platforms: effect of membrane surface charge. Int J Mol Sci 23(18):10558

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kovacs JM, Mant CT, Hodges RS (2006) Determination of intrinsic hydrophilicity/hydrophobicity of amino acid side chains in peptides in the absence of nearest-neighbor or conformational effects. Biopolymers 84(3):283–297

留言 (0)

沒有登入
gif