OX40/OX40 ligand and its role in precision immune oncology

Parry, R. V., Chemnitz, J. M., Frauwirth, K. A., et al. (2005). CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Molecular and Cellular Biology, 25(21), 9543–9553. https://doi.org/10.1128/MCB.25.21.9543-9553.2005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Melero, I., Hirschhorn-Cymerman, D., Morales-Kastresana, A., Sanmamed, M. F., & Wolchok, J. D. (2013). Agonist antibodies to TNFR molecules that costimulate T and NK cells. Clinical Cancer Research, 19(5), 1044–1053. https://doi.org/10.1158/1078-0432.CCR-12-2065

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mascarelli, D. E., Rosa, R. S. M., Toscaro, J. M., et al. (2021). Boosting antitumor response by costimulatory strategies driven to 4–1BB and OX40 T-cell receptors. Front Cell Dev Biol., 9, 92982,6. https://doi.org/10.3389/fcell.2021.692982

Article  PubMed  PubMed Central  Google Scholar 

Latza, U., Dürkop, H., Schnittger, S., et al. (1994). The human OX40 homolog: CDNA structure, expression and chromosomal assignment of the ACT35 antigen. European Journal of Immunology, 24(3), 677–683. https://doi.org/10.1002/eji.1830240329

Article  CAS  PubMed  Google Scholar 

Baum, P. R., Gayle, R. B., Ramsdell, F., et al. (1994). Molecular characterization of murine and human OX40/OX40 ligand systems: Identification of a human OX40 ligand as the HTLV-1-regulated protein gp34. EMBO Journal, 13(17), 3992–4001. https://doi.org/10.1002/j.1460-2075.1994.tb06715.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rogers, P. R., Song, J., Gramaglia, I., Killeen, N., & Croft, M. (2001). OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity, 15(3), 445–455. https://doi.org/10.1016/s1074-7613(01)00191-1

Article  CAS  PubMed  Google Scholar 

Sadler, R., Bateman, E. A. L., Heath, V., et al. (2014). Establishment of a healthy human range for the whole blood “OX40” assay for the detection of antigen-specific CD4+ T cells by flow cytometry. Cytometry Part B: Clinical Cytometry., 86(5), 350–361. https://doi.org/10.1002/cyto.b.21165

Article  CAS  PubMed  Google Scholar 

Croft, M., So, T., Duan, W., & Soroosh, P. (2009). The significance of OX40 and OX40L to T-cell biology and immune disease. Immunological Reviews, 229(1), 173–191. https://doi.org/10.1111/j.1600-065X.2009.00766.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gajdasik, D. W., Gaspal, F., Halford, E. E., et al. (2020). Th1 responses in vivo require cell-specific provision of OX40L dictated by environmental cues. Nature Communications, 11(1), 3421. https://doi.org/10.1038/s41467-020-17293-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Smedt, T., Smith, J., Baum, P., Fanslow, W., Butz, E., & Maliszewski, C. (2002). Ox40 costimulation enhances the development of T cell responses induced by dendritic cells in vivo. The Journal of Immunology, 168(2), 661–670. https://doi.org/10.4049/jimmunol.168.2.661

Article  PubMed  Google Scholar 

Wang, Q., Shi, B. M., Xie, F., et al. (2016). Enhancement of CD4(+) T cell response and survival via coexpressed OX40/OX40L in Graves’ disease. Molecular and Cellular Endocrinology, 430, 115–124. https://doi.org/10.1016/j.mce.2016.04.008

Article  CAS  PubMed  Google Scholar 

Jiang, J., Liu, C., Liu, M., et al. (2017). OX40 signaling is involved in the autoactivation of CD4+CD28− T cells and contributes to the pathogenesis of autoimmune arthritis. Arthritis Research & Therapy, 19(1), 67. https://doi.org/10.1186/s13075-017-1261-9

Article  CAS  Google Scholar 

Tripathi, T., Yin, W., Xue, Y., et al. (2019). Central roles of OX40L-OX40 interaction in the Induction and progression of human T cell-driven acute graft-versus-host disease. Immunohorizons, 3(3), 110–120. https://doi.org/10.4049/immunohorizons.1900001

Article  CAS  PubMed  Google Scholar 

Boettler, T., Moeckel, F., Cheng, Y., et al. (2012). OX40 Facilitates control of a persistent virus infection. PLOS Pathogens, 8(9), e1002913. https://doi.org/10.1371/journal.ppat.1002913

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tahiliani, V., Hutchinson, T. E., Abboud, G., Croft, M., & Salek-Ardakani, S. (2017). OX40 cooperates with ICOS to amplify follicular Th cell development and germinal center reactions during infection. The Journal of Immunology, 198(1), 218–228. https://doi.org/10.4049/jimmunol.1601356

Article  CAS  PubMed  Google Scholar 

Redmond, W. L., Ruby, C. E., & Weinberg, A. D. (2009). The role of OX40-mediated co-stimulation in T cell activation and survival. Critical Reviews in Immunology, 29(3), 187–201.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Croft, M. (2010). Control of immunity by the TNFR-related molecule OX40 (CD134). Annual Review of Immunology, 28, 57–78. https://doi.org/10.1146/annurev-immunol-030409-101243

Article  CAS  PubMed  PubMed Central  Google Scholar 

Williams, C. A., Murray, S. E., Weinberg, A. D., & Parker, D. C. (2007). OX40-mediated differentiation to effector function requires IL-2 receptor signaling but not CD28, CD40, IL-12Rbeta2, or T-bet. The Journal of Immunology, 178(12), 7694–7702. https://doi.org/10.4049/jimmunol.178.12.7694

Article  CAS  PubMed  Google Scholar 

Verdeil, G., Puthier, D., Nguyen, C., Schmitt-Verhulst, A. M., & Auphan-Anezin, N. (2006). STAT5-mediated signals sustain a TCR-initiated gene expression program toward differentiation of CD8 T cell effectors. The Journal of Immunology, 176(8), 4834–4842. https://doi.org/10.4049/jimmunol.176.8.4834

Article  CAS  PubMed  Google Scholar 

Sun, G., Sun, X., Li, W., et al. (2018). Critical role of OX40 in the expansion and survival of CD4 T-cell-derived double-negative T cells. Cell Death & Disease, 9(6), 1–13. https://doi.org/10.1038/s41419-018-0659-x

Article  CAS  Google Scholar 

Sun, G., Jin, H., Zhang, C., et al. (2018). OX40 regulates both innate and adaptive immunity and promotes nonalcoholic steatohepatitis. Cell Reports., 25(13), 3786-3799.e4. https://doi.org/10.1016/j.celrep.2018.12.006

Article  CAS  PubMed  Google Scholar 

Jenkins, S. J., Perona-Wright, G., Worsley, A. G. F., Ishii, N., & MacDonald, A. S. (2007). Dendritic cell expression of OX40 ligand acts as a costimulatory, not polarizing, signal for optimal Th2 priming and memory induction in vivo. The Journal of Immunology, 179(6), 3515–3523. https://doi.org/10.4049/jimmunol.179.6.3515

Article  CAS  PubMed  Google Scholar 

Arch, R. H., & Thompson, C. B. (1998). 4–1BB and Ox40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor kappaB. Molecular and Cellular Biology, 18(1), 558–565. https://doi.org/10.1128/MCB.18.1.558

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawamata, S., Hori, T., Imura, A., Takaori-Kondo, A., & Uchiyama, T. (1998). Activation of OX40 signal transduction pathways leads to tumor necrosis factor receptor-associated factor (TRAF) 2- and TRAF5-mediated NF-κB activation*. Journal of Biological Chemistry., 273(10), 5808–5814. https://doi.org/10.1074/jbc.273.10.5808

Article  CAS  PubMed  Google Scholar 

Song, J., So, T., Cheng, M., Tang, X., & Croft, M. (2005). Sustained survivin expression from OX40 costimulatory signals drives T cell clonal expansion. Immunity, 22(5), 621–631. https://doi.org/10.1016/j.immuni.2005.03.012

Article  CAS  PubMed  Google Scholar 

Vu, M. D., Xiao, X., Gao, W., et al. (2007). OX40 costimulation turns off Foxp3+ Tregs. Blood, 110(7), 2501–2510. https://doi.org/10.1182/blood-2007-01-070748

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piconese, S., Valzasina, B., & Colombo, M. P. (2008). OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. Journal of Experimental Medicine, 205(4), 825–839. https://doi.org/10.1084/jem.20071341

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tone, M., & Greene, M. I. (2011). Cooperative regulatory events and Foxp3 expression. Nature Immunology, 12(1), 14–16. https://doi.org/10.1038/ni0111-14

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, X., Xiao, X., Lan, P., et al. (2018). OX40 Costimulation inhibits Foxp3 expression and Treg induction via BATF3-dependent and independent mechanisms. Cell Reports, 24(3), 607–618. https://doi.org/10.1016/j.celrep.2018.06.052

Article  CAS  PubMed  Google Scholar 

Tanaka, A., & Sakaguchi, S. (2017). Regulatory T cells in cancer immunotherapy. Cell Research, 27(1), 109–118. https://doi.org/10.1038/cr.2016.151

Article  CAS  PubMed  Google Scholar 

So, T., & Croft, M. (2007). Cutting edge: OX40 inhibits TGF-β- and antigen-driven conversion of naive CD4 T cells into CD25+Foxp3+ T cells1. The Journal of Immunology., 179(3), 1427–1430. https://doi.org/10.4049/jimmunol.179.3.1427

Article  CAS  PubMed 

留言 (0)

沒有登入
gif