In Vitro Antiviral Activity of Two Host Defense Peptides Against Human alphaherpesvirus 1

Acosta Davila JA, Hernandez De Los Rios A (2019) An overview of peripheral blood mononuclear cells as a model for immunological research of Toxoplasma gondii and other apicomplexan parasites. Front Cell Infect Microbiol 9:24. https://doi.org/10.3389/fcimb.2019.00024

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ardebili A, Pouriayevali MH, Aleshikh S, Zahani M, Ajorloo M, Izanloo A, Siyadatpanah A, Razavi Nikoo H, Wilairatana P, Coutinho HDM (2021) Antiviral therapeutic potential of curcumin: an update. Molecules 26(22):6994. https://doi.org/10.3390/molecules26226994

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arimoto E, Iwai S, Sumi T, Ogawa Y, Yura Y (2006) Involvement of intracellular free Ca2+ in enhanced release of herpes simplex virus by hydrogen peroxide. Virol J. 3:62. https://doi.org/10.1186/1743-422X-3-62

Badani H, Garry RF, Wimley WC (2014) Peptide entry inhibitors of enveloped viruses: the importance of interfacial hydrophobicity. Biochim Biophys Acta 1838(9):2180–2197. https://doi.org/10.1016/j.bbamem.2014.04.015

Boparai JK, Sharma PK (2020) Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept Lett 27(1):4–16. https://doi.org/10.2174/0929866526666190822165812

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borst EM, Ständker L, Wagner K, Schulz TF, Forssmann WG, Messerle M (2013) A peptide inhibitor of cytomegalovirus infection from human hemofiltrate. Antimicrob Agents Chemother. 57(10):471–460. https://doi.org/10.1128/AAC.00854-13

Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, Hancock RE (2005) Impact of LL-37 on anti-infective immunity. J Leukoc Biol 77(4):451–459. https://doi.org/10.1189/jlb.0704380

Article  CAS  PubMed  Google Scholar 

Brice DC, Diamond G (2020) Antiviral activities of human host defense peptides. Curr Med Chem 27(9):1420–1443. https://doi.org/10.2174/0929867326666190805151654

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caliaro O, Barbani MT, Klenja S, Morfin F, Frobert E, Gorgievski M, Steinlin-Schopfer J, Suter-Riniker F (2020) Phenotypic testing of patient herpes simplex virus type 1 and 2 isolates for acyclovir resistance by a novel method based on real-time cell analysis. J Clin Virol 125:104303. https://doi.org/10.1016/j.jcv.2020.104303

Article  CAS  PubMed  Google Scholar 

Carriel-Gomes MC, Kratz JM, Barracco MA, Bachére E, Barardi CR, Simões CM (2007) In vitro antiviral activity of antimicrobial peptides against herpes simplex virus 1, adenovirus, and rotavirus. Mem Inst Oswaldo Cruz 102(4):469–472. https://doi.org/10.1590/s0074-02762007005000028

Article  CAS  PubMed  Google Scholar 

Cecotto L, van Kessel K, Wolfert MA, Vogely C, van der Wal B, Weinans H, van Strijp J, Amin YS (2022) Antibacterial and anti-inflammatory properties of host defense peptides against Staphylococcus aureus. iScience 25(10):105211. https://doi.org/10.1016/j.isci.2022.105211

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang JY, Balch C, Puccio J, Oh HS (2023) A narrative review of alternative symptomatic treatments for herpes simplex virus. Viruses 15(6):1314. https://doi.org/10.3390/v15061314

Article  CAS  PubMed  PubMed Central  Google Scholar 

de la Fuente-Núñez C, Reffuveille F, Mansour SC, Reckseidler-Zenteno SL, Hernández D, Brackman G, Coenye T, Hancock RE (2015) D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol 22(2):196–205. https://doi.org/10.1016/j.chembiol.2015.01.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Leeuw E, Burks SR, Li X, Kao JP, Lu W (2007) Structure-dependent functional properties of human defensin 5. FEBS Lett 581(3):515–520. https://doi.org/10.1016/j.febslet.2006.12.036

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dezengrini R, Silva SCD, Weiss M, Kreutz LC, Weiblen R, Flores EF (2010) Atividade de três drogas antivirais sobre os herpesvírus bovino tipos 1, 2 e 5 em cultivo celular. Pesquisa Veterinária Brasileira 30:855–860. https://doi.org/10.1590/S0100-736X2010001000008

Article  Google Scholar 

Drayton M, Deisinger JP, Ludwig KC, Raheem N, Müller A, Schneider T, Straus SK (2021) Host defense peptides: dual antimicrobial and immunomodulatory action. Int J Mol Sci 22(20):11172. https://doi.org/10.3390/ijms222011172

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng J, Wong KY, Lynch GC, Gao X, Pettitt BM (2009) Salt effects on surface-tethered peptides in solution. J Phys Chem B 113(28):9472–9478. https://doi.org/10.1021/jp902537f

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fernández A, Riera FA (2013) Influence of ionic strength on peptide membrane fractionation. Sep Purif Technol 119:129–135. https://doi.org/10.1016/j.seppur.2013.09.012

Article  CAS  Google Scholar 

Franci G, Falanga A, Zannella C, Folliero V, Martora F, Galdiero M, Galdiero S, Morelli G, Galdiero M (2017) Infectivity inhibition by overlapping synthetic peptides derived from the gH/gL heterodimer of herpes simplex virus type 1. J Pept Sci. 23(4):311–319. https://doi.org/10.1002/psc.2979

Freitas CG, Lima SMF, Freire MS, Cantuária APC, Júnior NGO, Santos TS, Folha JS, Ribeiro SM, Dias SC, Rezende TMB, Albuquerque P, Nicola AM, de la Fuente-Núñez C, Hancock REW, Franco OL, Felipe MSS (2017) An immunomodulatory peptide confers protection in an experimental Candidemia murine model. Antimicrob Agents Chemother 61(8):e02518-e2616. https://doi.org/10.1128/aac.02518-16

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghosh S, Devanand T, Baul U, Vemparala S (2019) Aggregation dynamics of charged peptides in water: effect of salt concentration. J Chem Phys 151(7):074901. https://doi.org/10.1063/1.5100890

Article  CAS  PubMed  Google Scholar 

Guo X, An Y, Tan W, Ma L, Wang M, Li J, Li B, Hou W, Wu L (2023) Cathelicidin-derived antiviral peptide inhibits herpes simplex virus 1 infection. Front Microbiol 5(14):1201505. https://doi.org/10.3389/fmicb.2023.1201505. (Erratum in: Front Microbiol. 2023 Jul 25;14:1254775)

Article  Google Scholar 

Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557. https://doi.org/10.1038/nbt1267

Haney EF, Wu BC, Lee K, Hilchie AL, Hancock REW (2017) Aggregation and its influence on the immunomodulatory activity of synthetic innate defense regulator peptides. Cell Chem Biol 24(8):969-980.e4. https://doi.org/10.1016/j.chembiol.2017.07.010.E

Article  CAS  PubMed  Google Scholar 

Hong W, Li T, Song Y, Zhang R, Zeng Z, Han S, Zhang X, Wu Y, Li W, Cao Z (2014) Inhibitory activity and mechanism of two scorpion venom peptides against herpes simplex virus type 1. Antiviral Res 102:1–10. https://doi.org/10.1016/j.antiviral.2013.11.013

Article  CAS  PubMed  Google Scholar 

Hong X, Liu X, Su B, Lin J (2023) Improved antimicrobial activity of bovine lactoferrin peptide (LFcinB) based on rational design. Protein J 42(6):633–644. https://doi.org/10.1007/s10930-023-10142-4

Article  CAS  PubMed  Google Scholar 

Imafuku S (2023) Recent advance in management of herpes simplex in Japan. J Dermatol 50(3):299–304. https://doi.org/10.1111/1346-8138.16734

Article  PubMed  Google Scholar 

Jenssen H, Andersen JH, Mantzilas D, Gutteberg TJ (2004) A wide range of medium-sized, highly cationic, alpha-helical peptides show antiviral activity against herpes simplex virus. Antiviral Res. 64(2):119–26. https://doi.org/10.1016/j.antiviral.2004.08.003

Khalesi Z, Tamrchi V, Razizadeh MH, Letafati A, Moradi P, Habibi A, Habibi N, Heidari J, Noori M, Nahid Samiei M, Azarash Z, Hoseini M, Saadati H, Bahavar A, Farajzade M, Saeb S, Hadadi M, Sorouri Majd M, Mothlaghzadeh S, Fazli P, Asgari K, Kiani SJ, Ghorbani S (2023) Association between human herpesviruses and multiple sclerosis: a systematic review and meta-analysis. Microb Pathog 177:106031. https://doi.org/10.1016/j.micpath.2023.106031

Article  CAS  PubMed  Google Scholar 

Ko SJ, Park E, Asandei A, Choi JY, Lee SC, Seo CH, Luchian T, Park Y (2020) Bee venom-derived antimicrobial peptide melectin has broad-spectrum potency, cell selectivity, and salt-resistant properties. Sci Rep 10(1):10145. https://doi.org/10.1038/s41598-020-66995-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kukhanova MK, Korovina AN, Kochetkov SN (2014) Human herpes simplex virus: life cycle and development of inhibitors. Biochemistry (mosc) 79(13):1635–1652. https://doi.org/10.1134/S0006297914130124

Article  CAS  PubMed  Google Scholar 

Labib BA, Chigbu DI (2022) Clinical management of herpes simplex virus keratitis. Diagnostics (basel) 12(10):2368. https://doi.org/10.3390/diagnostics12102368

Article  CAS  PubMed  Google Scholar 

Leung, Wadsworth SJ, Yang SJ, Dorscheid DR (2020) Structural and functional variations in human bronchial epithelial cells cultured in air-liquid interface using different growth media. Am J Physiol Lung Cell Mol Physiol 318(5):L1063–L1073. https://doi.org/10.1152/ajplung.00190.2019

Article  CAS  PubMed  Google Scholar 

Li Y, Meng Q, Yang M, Liu D, Hou X, Tang L, Wang X, Lyu Y, Chen X, Liu K, Yu AM, Zuo Z, Bi H (2019) Current trends in drug metabolism and pharmacokinetics. Acta Pharm Sin B 9(6):1113–1144. https://doi.org/10.1016/j.apsb.2019.10.001

Article  PubMed  PubMed Central  Google Scholar 

Liu R, Liu Z, Peng H, Lv Y, Feng Y, Kang J, Lu N, Ma R, Hou S, Sun W, Ying Q, Wang F, Gao Q, Zhao P, Zhu C, Wang Y, Wu X (2022) Bomidin: an optimized antimicrobial peptide with broad antiviral activity against enveloped viruses. Front Immunol 19(13):851642. https://doi.org/10.3389/fimmu.2022.851642

Article  CAS  Google Scholar 

Mansour SC, de la Fuente-Núñez C, Hancock RE (2015) Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections. J Pept Sci 21(5):323–329. https://doi.org/10.1002/psc.2708

留言 (0)

沒有登入
gif