A genome-wide association study of neutrophil count in individuals associated to an African continental ancestry group facilitates studies of malaria pathogenesis

WHO Africa. World malaria report 2019. 2019.

Price RN, Commons RJ, Battle KE, Thriemer K, Mendis K. Plasmodium vivax in the era of the shrinking P. falciparum map. Trends Parasitol. 2020;36:560–70. https://doi.org/10.1016/j.pt.2020.03.009.

Article  PubMed  PubMed Central  Google Scholar 

Moxon CA, Gibbins MP, McGuinness D, Milner DA, Marti M. New insights into malaria pathogenesis. Annu Rev Pathol. 2020;15:315–43. https://doi.org/10.1146/annurev-pathmechdis-012419-032640.

Article  CAS  PubMed  Google Scholar 

Knackstedt SL, Georgiadou A, Apel F, Abu-Abed U, Moxon CA, Cunnington AJ, et al. Neutrophil extracellular traps drive inflammatory pathogenesis in malaria. Sci Immunol. 2019;4:336. https://doi.org/10.1126/SCIIMMUNOL.AAW0336.

Article  Google Scholar 

Sierro F, Grau GER. The ins and outs of cerebral malaria pathogenesis: immunopathology, extracellular vesicles, immunometabolism, and trained immunity. Front Immunol. 2019;10:830. https://doi.org/10.3389/fimmu.2019.00830.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cela D, Knackstedt SL, Groves S, Rice CM, Kwon JTW, Mordmüller B, et al. PAD4 controls chemoattractant production and neutrophil trafficking in malaria. J Leukoc Biol. 2021. https://doi.org/10.1002/JLB.4AB1120-780R.

Article  PubMed  Google Scholar 

Kariuki SN, Williams TN. Human genetics and malaria resistance, vol. 139. Cham: Springer; 2020. https://doi.org/10.1007/S00439-020-02142-6.

Book  Google Scholar 

Allison AC. Protection afforded by sickle-cell trait against subtertian malarial infection. Br Med J. 1954;1:290–4. https://doi.org/10.1136/bmj.1.4857.290.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kwiatkowski DP. How Malaria Has Affected the Human Genome and What Human Genetics Can Teach Us about Malaria. The American Journal of Human Genetics. 2005;77:171–92. https://doi.org/10.1086/432519.

Article  CAS  PubMed  Google Scholar 

Ndila CM, Uyoga S, Macharia AW, Nyutu G, Peshu N, Ojal J, et al. Human candidate gene polymorphisms and risk of severe malaria in children in Kilifi, Kenya: a case-control association study. Lancet Haematol. 2018;5:e333–45. https://doi.org/10.1016/S2352-3026(18)30107-8.

Article  PubMed  PubMed Central  Google Scholar 

Mackinnon MJ, Mwangi TW, Snow RW, Marsh K, Williams TN. Heritability of Malaria in Africa. PLoS Med. 2005;2:e340. https://doi.org/10.1371/journal.pmed.0020340.

Article  PubMed  PubMed Central  Google Scholar 

Sakuntabhai A, Ndiaye R, Casadémont I, Peerapittayamonkol C, Rogier C, Tortevoye P, et al. Genetic determination and linkage mapping of Plasmodium falciparum malaria related traits in senegal. PLoS ONE. 2008;3:e2000. https://doi.org/10.1371/journal.pone.0002000.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Atallah-Yunes SA, Ready A, Newburger PE. Benign ethnic neutropenia. Blood Rev. 2019;37:100586. https://doi.org/10.1016/j.blre.2019.06.003.

Article  PubMed  Google Scholar 

Shoenfeld Y, Alkan ML, Asaly A, Carmeli Y, Katz M. Benign familial leukopenia and neutropenia in different ethnic groups. Eur J Haematol. 1988;41:273–7. https://doi.org/10.1111/j.1600-0609.1988.tb01192.x.

Article  CAS  PubMed  Google Scholar 

Rippey JJ. Leucopenia in West Indians and Africans. The Lancet. 1967;290:44. https://doi.org/10.1016/S0140-6736(67)90086-4.

Article  Google Scholar 

Denic S, Showqi S, Klein C, Takala M, Nagelkerke N, Agarwal MM. Prevalence, phenotype and inheritance of benign neutropenia in Arabs. BMC Blood Disord. 2009;9:3. https://doi.org/10.1186/1471-2326-9-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsieh MM, Everhart JE, Byrd-Holt DD, Tisdale JF, Rodgers GP. Prevalence of neutropenia in the U.S. population: age, sex, smoking status, and ethnic differences. Ann Intern Med. 2007;146:486. https://doi.org/10.7326/0003-4819-146-7-200704030-00004.

Article  PubMed  Google Scholar 

Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol. 2012;30:459–89. https://doi.org/10.1146/ANNUREV-IMMUNOL-020711-074942.

Article  CAS  PubMed  Google Scholar 

Reich D, Nalls MA, Kao WHL, Akylbekova EL, Tandon A, Patterson N, et al. Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene. PLoS Genet. 2009;5:360. https://doi.org/10.1371/journal.pgen.1000360.

Article  CAS  Google Scholar 

Rappoport N, Simon AJ, Amariglio N, Rechavi G. The Duffy antigen receptor for chemokines, ACKR 1,–‘Jeanne DARC’of benign neutropenia. Br J Haematol. 2019;184(4):497–507. https://doi.org/10.1111/bjh.15730.

Article  CAS  PubMed  Google Scholar 

Palmblad J, Höglund P. Ethnic benign neutropenia: a phenomenon finds an explanation. Pediatr Blood Cancer. 2018;65:e27361. https://doi.org/10.1002/pbc.27361.

Article  PubMed  Google Scholar 

Amulic B, Moxon CA, Cunnington AJ. A more granular view of neutrophils in malaria. Trends Parasitol. 2020;36(6):501–3.

Article  PubMed  Google Scholar 

Aitken EH, Alemu A, Rogerson SJ. Neutrophils and malaria. Front Immunol. 2018;9:3005. https://doi.org/10.3389/fimmu.2018.03005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anyona S, Cheng Q, Guo Y, Seidenberg P, Schneider K, Lambert C, et al. Entire expressed peripheral blood transcriptome in pediatric severe malarial anemia. Res Square 2023. https://doi.org/10.21203/RS.3.RS-3150748/V1.

Garcia-Senosiain A, Kana IH, Singh S, Das MK, Dziegiel MH, Hertegonne S, et al. Neutrophils dominate in opsonic phagocytosis of P. falciparum blood-stage merozoites and protect against febrile malaria. Commun Biol. 2021. https://doi.org/10.1038/S42003-021-02511-5.

Article  PubMed  PubMed Central  Google Scholar 

Zelter T, Strahilevitz J, Simantov K, Yajuk O, Jensen AR, Dzikowski R, et al. Neutrophils impose strong selective pressure against PfEMP1 variants implicated in cerebral malaria. BioRxiv 2021:2021.05.09.443317. https://doi.org/10.1101/2021.05.09.443317.

Smith GD, Ebrahim S. “Mendelian randomization”: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32:1–22. https://doi.org/10.1093/ije/dyg070.

Article  PubMed  Google Scholar 

Smith GD, Ebrahim S. Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol. 2004;33:30–42. https://doi.org/10.1093/ije/dyh132.

Article  PubMed  Google Scholar 

Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23:R89-98. https://doi.org/10.1093/hmg/ddu328.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng J, Baird D, Borges M-C, Bowden J, Hemani G, Haycock P, et al. Recent developments in mendelian randomization studies. Curr Epidemiol Rep. 2017;4:330–45. https://doi.org/10.1007/s40471-017-0128-6.

Article  PubMed  PubMed Central  Google Scholar 

Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9. https://doi.org/10.1038/s41586-018-0579-z.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Skrivankova VW, Richmond RC, Woolf BAR, Davies NM, Swanson SA, Vanderweele TJ, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ 2021;375. https://doi.org/10.1136/BMJ.N2233.

Chen MH, Raffield LM, Mousas A, Sakaue S, Huffman JE, Moscati A, et al. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell. 2020;182:1198-1213.e14. https://doi.org/10.1016/j.cell.2020.06.045.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Constantinescu A-E, Mitchell RE, Zheng J, Bull CJ, Timpson NJ, Amulic B, et al. A framework for research into continental ancestry groups of the UK Biobank. Hum Genomics. 2022;16:1–14. https://doi.org/10.1186/S40246-022-00380-5.

Article  Google Scholar 

Davey Smith G, Ebrahim S, Smith GD, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32:1–22. https://doi.org/10.1093/ije/dyg070.

Article  Google Scholar 

Hartwig FP, Davies NM, Hemani G, Smith GD. Two-sample Mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int J Epidemiol. 2016;45:1717–26.

Article  PubMed  Google Scholar 

Network MGE. Insights into malaria susceptibility using genome-wide data on 17,000 individuals from Africa, Asia and Oceania. Nat Commun. 2019;10:5732. https://doi.org/10.1038/s41467-019-13480-z.

Article  ADS  CAS  Google Scholar 

Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell. 2016;167:1415-1429.e19. https://doi.org/10.1016/j.cell.2016.10.042.

Article 

留言 (0)

沒有登入
gif