Evaluation of the Anti-biofilm Efficacy of Kyotorphin Derivatives and Biosafety Assessment: In Vitro and In Vivo Investigations Targeting Bacterial and Fungal Pathogens

Ahkin Chin Tai JK, Freeman JL (2020) Zebrafish as an integrative vertebrate model to identify miRNA mechanisms regulating toxicity. Toxicol Rep 7:559–570. https://doi.org/10.1016/j.toxrep.2020.03.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allegra E, Titball RW, Carter J, Champion OL (2018) Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals. Chemosphere 198:469–472. https://doi.org/10.1016/j.chemosphere.2018.01.175

Article  ADS  CAS  PubMed  Google Scholar 

Alves CS, Melo MN, Franquelim HG, Ferre R, Planas M, Feliu L, Bardají E, Kowalczyk W, Andreu D, Santos NC, Fernandes MX, Castanho MA (2010) Escherichia coli cell surface perturbation and disruption induced by antimicrobial peptides BP100 and pepR. J Biol Chem 285:27536–27544. https://doi.org/10.1074/jbc.M110.130955

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arvanitis M, Glavis-Bloom J, Mylonakis E (2013) Invertebrate models of fungal infection. Biochim Biophys Acta 1832:1378–1383. https://doi.org/10.1016/j.bbadis.2013.03.008

Article  CAS  PubMed  Google Scholar 

Augustine-Rauch K, Zhang CX, Panzica-Kelly JM (2016) A developmental toxicology assay platform for screening teratogenic liability of pharmaceutical compounds. Birth Defects Res B Dev Reprod Toxicol 107:4–20. https://doi.org/10.1002/bdrb.21168

Article  CAS  PubMed  Google Scholar 

Barros TP, Alderton WK, Reynolds HM, Roach AG, Berghmans S (2008) Zebrafish: an emerging technology for in vivo pharmacological assessment to identify potential safety liabilities in early drug discovery. Br J Pharmacol 154:1400–1413. https://doi.org/10.1038/bjp.2008.249

Article  CAS  PubMed  PubMed Central  Google Scholar 

Batista-Filho J, Falcão MAP, Maleski ALA, Soares ABS, Balan-Lima L, Disner GR, Lima C, Lopes-Ferreira M (2020) Early preclinical screening using zebrafish (Danio rerio) reveals the safety of the candidate anti-inflammatory therapeutic agent TnP. Toxicol Rep 8:13–22. https://doi.org/10.1016/j.toxrep.2020.12.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brannen KC, Panzica-Kelly JM, Danberry TL, Augustine-Rauch KA (2010) Development of a zebrafish embryo teratogenicity assay and quantitative prediction model. Birth Defects Res B Dev Reprod Toxicol 89:66–77. https://doi.org/10.1002/bdrb.20223

Article  CAS  PubMed  Google Scholar 

Chen P, Bodor N, Wu WM, Prokai L (1998) Strategies to target kyotorphin analogues to the brain. J Med Chem 41:3773–3781. https://doi.org/10.1021/jm970715l

Article  CAS  PubMed  Google Scholar 

Clinical and Laboratory Standards Institute (2008) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard, 2nd ed CLSI document M38-A2.

Clinical and Laboratory Standards Institute (2023) Performance standards for antimicrobial susceptibility testing; 33rd ed. CLSI Supplement M100.

Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1222. https://doi.org/10.1126/science.284.5418.1318

Article  ADS  CAS  PubMed  Google Scholar 

Cotter G, Doyle S, Kavanagh K (2000) Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol 27:163–169. https://doi.org/10.1111/j.1574-695X.2000.tb01427.x

Article  CAS  PubMed  Google Scholar 

D’Amora M, Giordani S (2018) The utility of zebrafish as a model for screening developmental neurotoxicity. Front Neurosci 12:976. https://doi.org/10.3389/fnins.2018.00976

Article  PubMed  PubMed Central  Google Scholar 

Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867. https://doi.org/10.1128/mmbr.64.4.847-867.2000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dias SA, Pinto SN, Silva-Herdade AS, Cheneval O, Craik DJ, Coutinho A, Castanho MARB, Henriques ST, Veiga AS (2022) A designed cyclic analogue of gomesin has potent activity against Staphylococcus aureus biofilms. J Antimicrob Chemother 77:3256–3264. https://doi.org/10.1093/jac/dkac309

Article  CAS  PubMed  PubMed Central  Google Scholar 

Disner GR, Falcão MAP, Andrade-Barros AI, Leite Dos Santos NV, Soares ABS, Marcolino-Souza M, Gomes KS, Lima C, Lopes-Ferreira M (2021) The Toxic effects of glyphosate, chlorpyrifos, abamectin, and 2,4-D on animal models: a systematic review of Brazilian studies. Integr Environ Assess Manag 17:507–520. https://doi.org/10.1002/ieam.4353Dunne

Article  CAS  PubMed  Google Scholar 

Dunne WM Jr (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15:155–166. https://doi.org/10.1128/cmr.15.2.155-166.2002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dzimbova T, Bocheva A, Pajpanova T (2014) Kyotorphin analogues containing unnatural amino acids: synthesis, analgesic activity and computer modeling of their interactions with m-receptor. Med Chem Res 23:3694–3704. https://doi.org/10.1007/s00044-014-0953-9

Article  CAS  Google Scholar 

Eliassen LT, Berge G, Sveinbjørnsson B, Svendsen JS, Vorland LH, Rekdal Ø (2002) Evidence for a direct antitumor mechanism of action of bovine lactoferricin. Anticancer Res 22:2703–2710

CAS  PubMed  Google Scholar 

Formaggio DMD, Magalhães JA, Andrade VM, Conceição K, Anastácio JM, Santiago GS, Arruda DC, Tada DB (2022) Co-Functionalization of Gold Nanoparticles with C7H2 and HuAL1 peptides: enhanced antimicrobial and antitumoral activities. Pharmaceutics 14:1324. https://doi.org/10.3390/pharmaceutics14071324

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fukui K, Shiomi H, Takagi H, Hayashi K, Kiso Y, Kitagawa K (1983) Isolation from bovine brain of a novel analgesic pentapeptide, neo-kyotorphin, containing the Tyr-Arg (kyotorphin) unit. Neuropharmacology 22:191–196. https://doi.org/10.1016/0028-3908(83)90008-4

Article  CAS  PubMed  Google Scholar 

Goodman & Gilman (1996) As Bases Farmacológicas da Terapêutica. Blackwell, London

Gudlaugsson O, Gillespie S, Lee K, Vande Berg J, Hu J, Messer S, Herwaldt L, Pfaller M, Diekema D (2003) Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis 37:1172–1177. https://doi.org/10.1086/378745

Article  PubMed  Google Scholar 

Haddad N, Carr M, Balian S, Lannin J, Kim Y, Toth C, Jarvis J (2022) The blood-brain barrier and pharmacokinetic/pharmacodynamic optimization of antibiotics for the treatment of central nervous system infections in adults. Antibiotics (basel) 11:1843. https://doi.org/10.3390/antibiotics11121843

Article  CAS  PubMed  Google Scholar 

Hartung T (2010) Lessons learned from alternative methods and their validation for a new toxicology in the 21st century. J Toxicol Environ Health B Crit Rev 13:277–290. https://doi.org/10.1080/10937404.2010.483945

Article  CAS  PubMed  Google Scholar 

Huang X, Zhang K, Deng M, Exterkate RAM, Liu C, Zhou X, Cheng L, Ten Cate JM (2017) Effect of arginine on the growth and biofilm formation of oral bacteria. Arch Oral Biol 82:256–262. https://doi.org/10.1016/j.archoralbio.2017.06.026

Article  CAS  PubMed  Google Scholar 

Jia HR, Zhu YX, Duan QY, Chen Z, Wu FG (2019) Nanomaterials meet zebrafish: toxicity evaluation and drug delivery applications. J Control Release 311–312:301–318. https://doi.org/10.1016/j.jconrel.2019.08.022

Article  CAS  PubMed  Google Scholar 

Jong AY, Stins MF, Huang SH, Chen SH, Kim KS (2001) Traversal of Candida albicans across human blood-brain barrier in vitro. Infect Immun 69:4536–4544. https://doi.org/10.1128/iai.69.7.4536-4544.2001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalueff AV, Stewart AM, Gerlai R (2014) Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 35:63–75. https://doi.org/10.1016/j.tips.2013.12.002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanungo J, Cuevas E, Ali SF, Paule MG (2014) Zebrafish model in drug safety assessment. Curr Pharm Des 20:5416–5429. https://doi.org/10.2174/1381612820666140205145658

Article  CAS  PubMed  Google Scholar 

Kavanagh K, Sheehan G (2018) The use of galleria mellonella larvae to identify novel antimicrobial agents against fungal species of medical interest. J Fungi (basel) 4:113. https://doi.org/10.3390/jof4030113

Article  CAS  PubMed  Google Scholar 

Komatsuzawa H, Ohta K, Sugai M, Fujiwara T, Glanzmann P, Berger-BächiB SH (2000) Tn551-mediated insertional inactivation of the fmtB gene encoding a cell wall-associated protein abolishes methicillin resistance in Staphylococcus aureus. J Antimicrob Chemother 45:421–431. https://doi.org/10.1093/jac/45.4.421

Article  CAS  PubMed  Google Scholar 

Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16:945–960. https://doi.org/10.1016/j.idairyj.2005.10.012

Article  CAS  Google Scholar 

Kwasny SM, Opperman TJ (

留言 (0)

沒有登入
gif