Harnessing function of EMT in cancer drug resistance: a metastasis regulator determines chemotherapy response

Vasan, N., Baselga, J., & Hyman, D. M. (2019). A view on drug resistance in cancer. Nature, 575, 299–309. https://doi.org/10.1038/s41586-019-1730-1

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yaray, K., Norbakhsh, A., Rashidzadeh, H., Mohammadi, A., Mozafari, F., Ghaffarlou, M., Mousazadeh, N., Ghaderzadeh, R., Ghorbani, Y., Nasehi, L., et al. (2023). Chemoradiation therapy of 4T1 cancer cells with methotrexate conjugated platinum nanoparticles under X-Ray irradiation. Inorganic Chemistry Communications, 150, 110457. https://doi.org/10.1016/j.inoche.2023.110457

Article  CAS  Google Scholar 

Assaraf, Y. G., Brozovic, A., Gonçalves, A. C., Jurkovicova, D., Linē, A., Machuqueiro, M., Saponara, S., Sarmento-Ribeiro, A. B., Xavier, C. P. R., & Vasconcelos, M. H. (2019). The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resistance Updates, 46, 100645. https://doi.org/10.1016/j.drup.2019.100645

Article  PubMed  Google Scholar 

Ashrafizadeh, M., Mirzaei, S., Hashemi, F., Zarrabi, A., Zabolian, A., Saleki, H., Sharifzadeh, S. O., Soleymani, L., Daneshi, S., & Hushmandi, K. (2021). New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomedicine & Pharmacotherapy, 141, 111824.

Article  CAS  Google Scholar 

Ashrafizadeh, M., Zarrabi, A., Hushmandi, K., Kalantari, M., Mohammadinejad, R., Javaheri, T., & Sethi, G. (2020). Association of the epithelial–mesenchymal transition (EMT) with cisplatin resistance. International journal of Molecular Sciences, 21, 4002.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yang, J., Antin, P., Berx, G., Blanpain, C., Brabletz, T., Bronner, M., Campbell, K., Cano, A., Casanova, J., Christofori, G., et al. (2020). Guidelines and definitions for research on epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology, 21, 341–352. https://doi.org/10.1038/s41580-020-0237-9

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mirzaei, S., Abadi, A. J., Gholami, M. H., Hashemi, F., Zabolian, A., Hushmandi, K., Zarrabi, A., Entezari, M., Aref, A. R., & Khan, H. (2021). The involvement of epithelial-to-mesenchymal transition in doxorubicin resistance: Possible molecular targets. European Journal of Pharmacology, 908, 174344.

Article  PubMed  CAS  Google Scholar 

Olmeda, D., Moreno-Bueno, G., Flores, J. M., Fabra, A., Portillo, F., & Cano, A. (2007). SNAI1 is required for tumor growth and lymph node metastasis of human breast carcinoma MDA-MB-231 cells. Cancer Research, 67, 11721–11731. https://doi.org/10.1158/0008-5472.Can-07-2318

Article  PubMed  CAS  Google Scholar 

Nosrati, H., Salehiabar, M., Charmi, J., Yaray, K., Ghaffarlou, M., Balcioglu, E., & Ertas, Y. N. (2023). Enhanced in vivo radiotherapy of breast cancer using gadolinium oxide and gold hybrid nanoparticles. ACS Applied Bio Materials, 6, 784–792. https://doi.org/10.1021/acsabm.2c00965

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ashrafizadeh, M., Hushmandi, K., Hashemi, M., Akbari, M. E., Kubatka, P., Raei, M., Koklesova, L., Shahinozzaman, M., Mohammadinejad, R., & Najafi, M. (2020). Role of microRNA/epithelial-to-mesenchymal transition axis in the metastasis of bladder cancer. Biomolecules, 10, 1159.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mirzaei, S., Gholami, M. H., Aghdaei, H. A., Hashemi, M., Parivar, K., Karamian, A., Zarrabi, A., Ashrafizadeh, M., & Lu, J. (2023). Exosome-mediated miR-200a delivery into TGF-β-treated AGS cells abolished epithelial-mesenchymal transition with normalization of ZEB1, vimentin and Snail1 expression. Environmental Research, 231, 116115.

Article  PubMed  CAS  Google Scholar 

Boumahdi, S., & de Sauvage, F. J. (2020). The great escape: Tumour cell plasticity in resistance to targeted therapy. Nature Reviews Drug Discovery, 19, 39–56. https://doi.org/10.1038/s41573-019-0044-1

Article  PubMed  CAS  Google Scholar 

Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C., & Kuperwasser, C. (2019). Phenotypic plasticity: Driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell, 24, 65–78. https://doi.org/10.1016/j.stem.2018.11.011

Article  PubMed  CAS  Google Scholar 

Erin, N., Grahovac, J., Brozovic, A., & Efferth, T. (2020). Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resistance Updates, 53, 100715. https://doi.org/10.1016/j.drup.2020.100715

Article  PubMed  Google Scholar 

Barriere, G., Fici, P., Gallerani, G., Fabbri, F., & Rigaud, M. (2015). Epithelial mesenchymal transition: A double-edged sword. Clinical and Translational Medicine, 4, 14. https://doi.org/10.1186/s40169-015-0055-4

Article  PubMed  PubMed Central  Google Scholar 

Nieto, M. A., Huang, R. Y., Jackson, R. A., & Thiery, J. P. E. M. T. (2016). Cell, 2016(166), 21–45. https://doi.org/10.1016/j.cell.2016.06.028

Article  CAS  Google Scholar 

Lamouille, S., Xu, J., & Derynck, R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology, 15, 178–196. https://doi.org/10.1038/nrm3758

Article  PubMed  PubMed Central  CAS  Google Scholar 

Peinado, H., Olmeda, D., & Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: An alliance against the epithelial phenotype? Nature Reviews Cancer, 7, 415–428. https://doi.org/10.1038/nrc2131

Article  PubMed  CAS  Google Scholar 

Kang, Y., & Massagué, J. (2004). Epithelial-mesenchymal transitions: Twist in development and metastasis. Cell, 118, 277–279. https://doi.org/10.1016/j.cell.2004.07.011

Article  PubMed  CAS  Google Scholar 

Wick, W., Platten, M., & Weller, M. (2001). Glioma cell invasion: Regulation of metalloproteinase activity by TGF-beta. Journal of Neuro-oncology, 53, 177–185. https://doi.org/10.1023/a:1012209518843

Article  PubMed  CAS  Google Scholar 

Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119, 1420–1428. https://doi.org/10.1172/jci39104

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ocaña, O. H., Córcoles, R., Fabra, A., Moreno-Bueno, G., Acloque, H., Vega, S., Barrallo-Gimeno, A., Cano, A., & Nieto, M. A. (2012). Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell, 22, 709–724. https://doi.org/10.1016/j.ccr.2012.10.012

Article  PubMed  CAS  Google Scholar 

Tsai, J. H., Donaher, J. L., Murphy, D. A., Chau, S., & Yang, J. (2012). Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell, 22, 725–736. https://doi.org/10.1016/j.ccr.2012.09.022

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shibue, T., Brooks, M. W., & Weinberg, R. A. (2013). An integrin-linked machinery of cytoskeletal regulation that enables experimental tumor initiation and metastatic colonization. Cancer Cell, 24, 481–498. https://doi.org/10.1016/j.ccr.2013.08.012

Article  PubMed  CAS  Google Scholar 

Nikolaou, M., Pavlopoulou, A., Georgakilas, A. G., & Kyrodimos, E. (2018). The challenge of drug resistance in cancer treatment: A current overview. Clinical & Experimental Metastasis, 35, 309–318. https://doi.org/10.1007/s10585-018-9903-0

Article  CAS  Google Scholar 

Housman, G., Byler, S., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., & Sarkar, S. (2014). Drug resistance in cancer: An overview. Cancers (Basel), 6, 1769–1792. https://doi.org/10.3390/cancers6031769

Article  PubMed  Google Scholar 

Zheng, X., Carstens, J. L., Kim, J., Scheible, M., Kaye, J., Sugimoto, H., Wu, C. C., LeBleu, V. S., & Kalluri, R. (2015). Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature, 527, 525–530. https://doi.org/10.1038/nature16064

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fischer, K. R., Durrans, A., Lee, S., Sheng, J., Li, F., Wong, S. T., Choi, H., El Rayes, T., Ryu, S., Troeger, J., et al. (2015). Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature, 527, 472–476. https://doi.org/10.1038/nature15748

Article  PubMed  PubMed Central  CAS  Google Scholar 

Huang, J., Li, H., & Ren, G. (2015). Epithelial-mesenchymal transition and drug resistance in breast cancer (Review). International Journal of Oncology, 47, 840–848. https://doi.org/10.3892/ijo.2015.3084

Article  PubMed  CAS  Google Scholar 

Saxena, M., Stephens, M. A., Pathak, H., & Rangarajan, A. (2011). Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death & Disease, 2, e179. https://doi.org/10.1038/cddis.2011.61

Article  CAS  Google Scholar 

Sommers, C. L., Heckford, S. E., Skerker, J. M., Worland, P., Torri, J. A., Thompson, E. W., Byers, S. W., & Gelmann, E. P. (1992). Loss of epithelial markers and acquisition of vimentin expression in adriamycin- and vinblastine-resistant human breast cancer cell lines. Cancer Research, 52, 5190–5197.

PubMed  CAS  Google Scholar 

Della Corte, C. M., Bellevicine, C., Vicidomini, G., Vitagliano, D., Malapelle, U., Accardo, M., Fabozzi, A., Fiorelli, A., Fasano, M., Papaccio, F., et al. (2015). SMO gene amplification and activation of the hedgehog pathway as novel mechanisms of resistance to anti-epidermal growth factor receptor drugs in human lung cancer. Clinical Cancer Research, 21, 4686–4697. https://doi.org/10.1158/1078-0432.Ccr-14-3319

Article  PubMed

留言 (0)

沒有登入
gif