The A-stage process to promote bioflocculation and microbial storage for carbon redirection: current perspectives and future research directions

Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026

Article  CAS  Google Scholar 

Alloul A, Ganigué R, Spiller M et al (2018) Capture-ferment-upgrade: a three-step approach for the valorization of sewage organics as commodities. Environ Sci Technol 52:6729–6742. https://doi.org/10.1021/acs.est.7b05712

Article  CAS  Google Scholar 

AlSayed A, Soliman M, ElDyasti A (2022) An alternative A-stage process - Investigating the novel alternating activated adsorption (AAA) system for carbon management under different wastewater strengths. J Environ Manage 303:114172. https://doi.org/10.1016/j.jenvman.2021.114172

Article  CAS  Google Scholar 

Beun JJ, Paletta F, Van Loosdrecht MCM, Heijnen JJ (2000) Stoichiometry and kinetics of poly-β-hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures. Biotechnol Bioeng 67:379–389. https://doi.org/10.1002/(SICI)1097-0290(20000220)67:4%3c379::AID-BIT1%3e3.0.CO;2-2

Article  CAS  Google Scholar 

Beun JJ, Dircks K, Van Loosdrecht MCM, Heijnen JJ (2002) Poly-β-hydroxybutyrate metabolism in dynamically fed mixed microbial cultures. Water Res 36:1167–1180. https://doi.org/10.1016/S0043-1354(01)00317-7

Article  CAS  Google Scholar 

Buswell AM, Long HL (1923) Microbiology and theory of activated sludge. J Am Water Works Assoc 10:309–321. https://doi.org/10.1002/j.1551-8833.1923.tb14184.x

Article  CAS  Google Scholar 

Bӧhnke B, Diering B, Zuckut SW (1997) Cost-effective wastewater treatment process for removal of. Water Eng Manag 144:30–34

Google Scholar 

Cagnetta C, Coma M, Vlaeminck SE, Rabaey K (2016) Production of carboxylates from high rate activated sludge through fermentation. Biores Technol 217:165–172. https://doi.org/10.1016/j.biortech.2016.03.053

Article  CAS  Google Scholar 

Cagnetta C, Saerens B, Meerburg FA et al (2019) High-rate activated sludge systems combined with dissolved air flotation enable effective organics removal and recovery. Biores Technol 291:121833. https://doi.org/10.1016/j.biortech.2019.121833

Article  CAS  Google Scholar 

Canals J, Cabrera-Codony A, Carbó O et al (2023) High-rate activated sludge at very short SRT: Key factors for process stability and performance of COD fractions removal. Water Res 231:119610. https://doi.org/10.1016/j.watres.2023.119610

Article  CAS  Google Scholar 

Carta F, Beun JJ, van Loosdrecht MCM, Heijnen JJ (2001) Simultaneous storage and degradation of phb and glycogen in activated sludge cultures. Water Res 35:2693–2701. https://doi.org/10.1016/S0043-1354(00)00563-7

Article  CAS  Google Scholar 

Carucci A, Dionisi D, Majone M et al (2001) Aerobic storage by activated sludge on real wastewater. Water Res 35:3833–3844. https://doi.org/10.1016/S0043-1354(01)00108-7

Article  CAS  Google Scholar 

Chudoba J, Grau P, Ottová V (1973) Control of activated-sludge filamentous bulking-II. Selection of microorganisms by means of a selector. Water Res 7:1389–1406. https://doi.org/10.1016/0043-1354(73)90113-9

Article  CAS  Google Scholar 

de Graaff MS, van den Brand TPH, Roest K et al (2016) Full-scale highly-loaded wastewater treatment processes (A-Stage) to increase energy production from wastewater: performance and design guidelines. Environ Eng Sci 33:571–577. https://doi.org/10.1089/ees.2016.0022

Article  CAS  Google Scholar 

Dionisi D, Majone M, Vallini G et al (2007) Effect of the length of the cycle on biodegradable polymer production and microbial community selection in a sequencing batch reactor. Biotechnol Prog. https://doi.org/10.1021/bp060370c

Article  Google Scholar 

Dolejs P, Gotvald R, Velazquez AML et al (2016) Contact stabilization with enhanced accumulation process for energy recovery from sewage. Environ Eng Sci 33:873–881. https://doi.org/10.1089/ees.2016.0155

Article  CAS  Google Scholar 

Ge H, Batstone DJ, Mouiche M et al (2017) Nutrient removal and energy recovery from high-rate activated sludge processes: impact of sludge age. Biores Technol 245:1155–1161. https://doi.org/10.1016/j.biortech.2017.08.115

Article  CAS  Google Scholar 

Greeley SA, Dixon RM (1943) High rate biological sewage treatment. Sewage Works J 15:1062–1087

CAS  Google Scholar 

Gude VG (2015) Energy and water autarky of wastewater treatment and power generation systems. Renew Sustain Energy Rev 45:52–68

Article  Google Scholar 

Guven H, Ersahin ME, Dereli RK et al (2017) Effect of hydraulic retention time on the performance of high-rate activated sludge system: a pilot-scale study. Water Air Soil Pollut 228:1–10. https://doi.org/10.1007/s11270-017-3598-8

Article  CAS  Google Scholar 

Guven H, Dereli RK, Ozgun H et al (2019a) Towards sustainable and energy efficient municipal wastewater treatment by up-concentration of organics. Prog Energy Combust Sci 70:145–168. https://doi.org/10.1016/j.pecs.2018.10.002

Article  Google Scholar 

Haider S (2002) CSB-Elimination in höchstbelasteten Belebungsstufen und ihre Auswirkung auf die Stickstoffelimination von zweistufigen Anlagen unter dem Gesichtspunkt der mathematischen Modellierung. Institut f. Wassergüte, Ressourcenmanagement u. Abfallwirtschaft, TU Wien

Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D (2008) Biological wastewater treatment: principles. IWA Publishing, Modelling and Design

Google Scholar 

Insel G, Yavaşbay A, Ozcan O, Cokgor EU (2012) Modeling of simultaneous growth and storage kinetics variation under unsteady feast conditions for aerobic heterotrophic biomass. Bioprocess Biosyst Eng 35:1445–1454. https://doi.org/10.1007/s00449-012-0733-1

Article  CAS  Google Scholar 

Jimenez JA, La Motta EJ, Parker DS (2005) Kinetics of removal of particulate chemical oxygen demand in the activated-sludge process. Water Environ Res 77:437–446. https://doi.org/10.2175/106143005X67340

Article  CAS  Google Scholar 

Jimenez JA, La Motta EJ, Parker DS (2007) Effect of operational parameters on the removal of particulate chemical oxygen demand in the activated sludge process. Water Environ Res 79:984–990. https://doi.org/10.2175/106143007X175717

Article  CAS  Google Scholar 

Jimenez J, Miller M, Bott C et al (2015) High-rate activated sludge system for carbon management: evaluation of crucial process mechanisms and design parameters. Water Res 87:476–482. https://doi.org/10.1016/j.watres.2015.07.032

Article  CAS  Google Scholar 

Kinyua MN, Elliott M, Wett B et al (2017a) The role of extracellular polymeric substances on carbon capture in a high rate activated sludge A-stage system. Chem Eng J 322:428–434. https://doi.org/10.1016/j.cej.2017.04.043

Article  CAS  Google Scholar 

Kinyua MN, Miller MW, Wett B et al (2017b) Polyhydroxyalkanoates, triacylglycerides and glycogen in a high rate activated sludge A-stage system. Chem Eng J 316:350–360. https://doi.org/10.1016/j.cej.2017.01.122

Article  CAS  Google Scholar 

Klaus SA, Sadowski MS, Kinyua MN et al (2020) Effect of influent carbon fractionation and reactor configuration on mainstream nitrogen removal and NOB out-selection. Environ Sci Water Res Technol. https://doi.org/10.1039/c9ew00873j

Article  Google Scholar 

Liu YYJ, Gu J, Liu YYJ (2018) Energy self-sufficient biological municipal wastewater reclamation: present status, challenges and solutions forward. Biores Technol 269:513–519. https://doi.org/10.1016/j.biortech.2018.08.104

Article  CAS  Google Scholar 

Majone M, Dircks K, Beim JJ (1999) Aerobic storage under dynamic conditions in activated sludge processes: the state of the art. Water Sci Technol 39:61–73. https://doi.org/10.1016/S0273-1223(98)00776-8

Article  CAS  Google Scholar 

McCarty PL, Bae J, Kim J (2011) Domestic wastewater treatment as a net energy producer-can this be achieved? Environ Sci Technol 45:7100–7106. https://doi.org/10.1021/es2014264

Article  CAS  Google Scholar 

Meerburg FA (2016) High-rate activated sludge systems to maximize recovery of energy from wastewater : microbial ecology and novel operational strategies. Ghent University, Faculty of Bioscience Engineering

Google Scholar 

Meerburg FA, Boon N, Van Winckel T et al (2015) Toward energy-neutral wastewater treatment: a high-rate contact stabilization process to maximally recover sewage organics. Biores Technol 179:373–381. https://doi.org/10.1016/j.biortech.2014.12.018

Article  CAS  Google Scholar 

Meerburg FA, Boon N, Van Winckel T et al (2016) Live fast, die young: optimizing retention times in high-rate contact stabilization for maximal recovery of organics from wastewater. Environ Sci Technol 50:9781–9790. https://doi.org/10.1021/acs.est.6b01888

Article  CAS  Google Scholar 

Metcalf E, Tchobanoglous G et al (2014) Wastewater engineering: treatment and resource recovery. McGraw Hill Education, New York

Google Scholar 

Miller MW (2015) Optimizing high-rate activated sludge: organic substrate for biological nitrogen removal and energy recovery. Virginia Tech

Modin O, Persson F, Wilén BM, Hermansson M (2016) Nonoxidative removal of organics in the activated sludge process. Crit Rev Environ Sci Technol 46:635–672. https://doi.org/10.1080/10643389.2016.1149903

Article  CAS  Google Scholar 

Moralejo-Gárate H, Kleerebezem R, Mosquera-Corral A, van Loosdrecht MCM (2013) Impact of oxygen limitation on glycerol-based biopolymer production by bacterial enrichments. Water Res 47:1209–1217. https://doi.org/10.1016/J.WATRES.2012.11.039

Article  Google Scholar 

Morgan-Sagastume F, Valentino F, Hjort M et al (2014) Polyhydroxyalkanoate (PHA) production from sludge and municipal wastewater treatment. Water Sci Technol 69:177–184. https://doi.org/10.2166/wst.2013.643

Article  CAS  Google Scholar 

Morgan-Sagastume F, Hjort M, Cirne D et al (2015) Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Biores Technol 181:78–89. https://doi.org/10.1016/j.biortech.2015.01.046

Article  CAS  Google Scholar 

Ni BJ, Zeng RJ, Fang F et al (2009) A novel approach to evaluate the production kinetics of extracellular polymeric substances (EPS) by activated sludge using weighted nonlinear least-squares analysis. Environ Sci Technol 43:3743–3750. https://doi.org/10.1021/es9001289

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif