Abu-Ghosh S, Dubinsky Z, Verdelho V et al (2021) Unconventional high-value products from microalgae: a review. Bioresour Technol 329:124895. https://doi.org/10.1016/j.biortech.2021.124895
Adessi A, Cruz de Carvalho R, De Philippis R et al (2018) Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts. Soil Biol Biochem 116:67–69. https://doi.org/10.1016/j.soilbio.2017.10.002
Adessi A, De Philippis R, Rossi F (2021) Drought-tolerant cyanobacteria and mosses as biotechnological tools to attain land degradation neutrality. Web Ecol 21:65–78. https://doi.org/10.5194/we-21-65-2021
Adey W (1982) Algal turf scrubber. USA Pat. 263
Ahmad IZ (2022) The usage of cyanobacteria in wastewater treatment: prospects and limitations. Lett Appl Microbiol 75:718–730. https://doi.org/10.1111/lam.13587
Ahmed SF, Mofijur M, Parisa TA et al (2022) Progress and challenges of contaminate removal from wastewater using microalgae biomass. Chemosphere 286:131656. https://doi.org/10.1016/j.chemosphere.2021.131656
Ali H, Park CW (2017) Numerical multiphase modeling of CO2 absorption and desorption in microalgal raceway ponds to improve their carbonation efficiency. Energy 127:358–371. https://doi.org/10.1016/j.energy.2017.03.143
Alobwede E, Leake JR, Pandhal J (2019) Circular economy fertilization: testing micro and macro algal species as soil improvers and nutrient sources for crop production in greenhouse and field conditions. Geoderma 334:113–123. https://doi.org/10.1016/j.geoderma.2018.07.049
Ambrosio R, Sanchez Rizza L, Do Nascimento M et al (2022) Promises and challenges for expanding the use of N2-fixing cyanobacteria as a fertilizer for sustainable agriculture. In: Singh P, Fillat M, Kumar A (eds) Cyanobacterial lifestyle and its applications in biotechnology. Academic Press, pp 99–158. https://doi.org/10.1016/B978-0-323-90634-0.00002-0
Ammar SH, Khadim HJ, Mohamed AI (2018) Cultivation of Nannochloropsis oculata and Isochrysis galbana microalgae in produced water for bioremediation and biomass production. Environ Technol Innov 10:132–142. https://doi.org/10.1016/j.eti.2018.02.002
Andrade DS, Telles TS, Leite Castro GH (2020) The Brazilian microalgae production chain and alternatives for its consolidation. J Clean Prod 250:119526. https://doi.org/10.1016/j.jclepro.2019.119526
Arbib Z, Ruiz J, Álvarez-Díaz P et al (2013) Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecol Eng 52:143–153. https://doi.org/10.1016/j.ecoleng.2012.12.089
Arévalo S, Nenninger A, Nieves-Morión M et al (2021) Coexistence of communicating and non-communicating cells in the filamentous cyanobacterium Anabaena. mSsphere 6:e01091-e1120. https://doi.org/10.1128/msphere.01091-20
Bader AN, Sanchez Rizza L, Consolo VF et al (2023) Bioprospecting for fungal enzymes for applications in microalgal biomass biorefineries. Appl Microbiol Biotechnol 107:591–607. https://doi.org/10.1007/s00253-022-12328-9
Bajpai P (2022) Water footprint. In: Bajpai P (ed) Fourth generation biofuels. Springer Nature, Singapore, pp 69–75. https://doi.org/10.1007/978-981-19-2001-1
Ben Hassen T, El Bilali H (2022) Impacts of the Russia-Ukraine war on global food security: towards more sustainable and resilient food systems? Foods 11:2301. https://doi.org/10.3390/foods11152301
Benemann JR (1979) Production of nitrogen fertilizer with nitrogen-fixing blue-green algae. Enzyme Microb Technol 1:83–90. https://doi.org/10.1016/B978-008044276-1/50227-0
Benemann J, van Olst J, Massingill M, et al (2003) The controlled eutrophication process: using microalgae for CO2 utilization and agricultural fertilizer recycling. Presented at the Greenhouse gas control technologies-6th international conference, Elsevier, pp 1433–1438
Berman-Frank I, Quigg A, Finkel ZV et al (2007) Nitrogen-fixation strategies and Fe requirements in cyanobacteria. Limnol Oceanogr 52:2260–2269. https://doi.org/10.4319/lo.2007.52.5.2260
Berner F, Heimann K, Sheehan M (2015) Microalgal biofilms for biomass production. J Appl Phycol 27:1793–1804. https://doi.org/10.1007/s10811-014-0489-x
Bhooshan N, Singh A, Sharma A et al (2020) Cyanobacterial biofertilizer’s successful journey from rural technology to commercial enterprise: an Indian perspective. J Appl Phycol 32:3995–4002. https://doi.org/10.1007/s10811-020-02237-7
Borowitzka MA (1999) Commercial-scale culture of Cyanobacteria. In: Charpy L, Larkum AWD (eds) Marine Cyanobacteria. Monaco-Monaco Musee-Oceanographique, no NS 19, pp 507–515
Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577. https://doi.org/10.1016/j.rser.2009.10.009
Burén S, Jiménez-Vicente E, Echavarri-Erasun C et al (2020) Biosynthesis of nitrogenase cofactors. Chem Rev 120:4921–4968. https://doi.org/10.1021/acs.chemrev.9b00489
Busnel A, Samhat K, Gérard E et al (2021) Development and validation of a screening system for characterizing and modeling biomass production from cyanobacteria and microalgae: application to Arthrospira platensis and Haematococcus pluvialis. Algal Res 58:102386. https://doi.org/10.1016/j.algal.2021.102386
Calicioglu O, Demirer GN (2022) Role of microalgae in circular economy. In: Demirer GN, Uludag-Demirer S (eds) Integrated wastewater management and valorization using algal cultures. Elsevier, pp 1–12. https://doi.org/10.1016/B978-0-323-85859-5.00003-8
Calijuri ML, Silv TA, Magalhães IB et al (2022) Bioproducts from microalgae biomass: technology, sustainability, challenges and opportunities. Chemosphere 305:135508. https://doi.org/10.1016/j.chemosphere.2022.135508
Canter CE, Blowers P, Handler RM et al (2015) Implications of widespread algal biofuels production on macronutrient fertilizer supplies: nutrient demand and evaluation of potential alternate nutrient sources. Appl Energy 143:71–80. https://doi.org/10.1016/j.apenergy.2014.12.065
de Carvalho J, Sydney EB, de Souza Kirnev PC, et al (2019) Technologies for separation and drying of algal biomass for varied applications. In: Ravishankar G, Ambati RR (eds) Handbook of algal technologies and phytochemicals. CRC Press, pp 241–250. https://doi.org/10.1201/9780429057892
Cassman KG, Dobermann A (2022) Nitrogen and the future of agriculture: 20 years on. Ambio 51:17–24. https://doi.org/10.1007/s13280-021-01526-w
Cedrez CB, Chamberlin J, Guo Z et al (2020) Spatial variation in fertilizer prices in Sub-Saharan Africa. PLoS ONE 15:e0227764. https://doi.org/10.1371/journal.pone.0227764
Chabili A, Minaoui F, Hakkoum Z et al (2024) A comprehensive review of microalgae and cyanobacteria-based biostimulants for agriculture uses. Plants 13:159. https://doi.org/10.3390/plants13020159
Chakravarty S, Mallick N (2022) Carbon dioxide mitigation and biodiesel production by a marine microalga under mixotrophic mode by using transesterification by-product crude glycerol: a synergy of biofuels and waste valorization. Environ Technol Innov 27:102441. https://doi.org/10.1016/j.eti.2022.102441
Cheenakula D, Hoffstadt K, Krafft S et al (2022) Anaerobic digestion of algal–bacterial biomass of an algalturf scrubber system. Biomass Convers Biorefinery 13:13605–13619. https://doi.org/10.1007/s13399-022-03236-z
Cheirsilp B, Maneechote W (2022) Insight on zero waste approach for sustainable microalgae biorefinery: sequential fractionation, conversion and applications for high-to-low value-added products. Bioresour Technol Rep 18:101003. https://doi.org/10.1016/j.biteb.2022.101003
Chen T, Zhang S, Yuan Z (2020) Adoption of solid organic waste composting products: a critical review. J Clean Prod 272:122712. https://doi.org/10.1016/j.jclepro.2020.122712
Chittora D, Meena M, Barupal T et al (2020) Cyanobacteria as a source of biofertilizers for sustainable agriculture. Biochem Biophys Rep 22:100737. https://doi.org/10.1016/j.bbrep.2020.100737
Chojnacka K, Witek-Krowiak A, Moustakas K et al (2020) A transition from conventional irrigation to fertigation with reclaimed wastewater: prospects and challenges. Renew Sustain Energy Rev 130:109959. https://doi.org/10.1016/j.rser.2020.109959
Choudhury A, Kennedy (2004) Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils 39:219–227. https://doi.org/10.1007/s00374-003-0706-2
Ciceri D, Allanore A (2019) Local fertilizers to achieve food self-sufficiency in Africa. Sci Total Environ 648:669–680. https://doi.org/10.1016/j.scitotenv.2018.08.154
Clares ME, Moreno J, Guerrero MG et al (2014) Assessment of the CO2 fixation capacity of Anabaena sp. ATCC 33047 outdoor cultures in vertical flat-panel reactors. J Biotechnol 187:51–55. https://doi.org/10.1016/j.jbiotec.2014.07.014
Clippinger JN, Davis RE (2019) Techno-economic analysis for the production of algal biomass via closed photobioreactors: future cost potential evaluated across a range of cultivation system designs (No. NREL/TP-5100–72716). National Renewable Energy Lab. (NREL), Golden, CO (United States). https://doi.org/10.2172/1566806
Coronel CD, Curatti L (2021) Climate-simulated culturing suggests high microalgal biomass and oil productivities in most of the South American continent. Biotechnol J 16:2100067. https://doi.org/10.1002/biot.202100067
Correa DF, Beyer HL, Possingham HP et al (2021) Microalgal biofuel production at national scales: reducing conflicts with agricultural lands and biodiversity within countries. Energy 215:119033. https://doi.org/10.1016/j.energy.2020.119033
Curatti L, Flores E, Salerno G (2002) Sucrose is involved in the diazotrophic metabolism of the heterocyst-forming cyanobacterium Anabaena sp. FEBS Lett 513:175–178. https://doi.org/10.1016/S0014-5793(02)02283-4
Daneshvar E, Wicker RJ, Show P-L et al (2022) Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization–a review. Chem Eng J 427:130884. https://doi.org/10.1016/j.cej.2021.130884
留言 (0)