A bacterial outlook on the caproate production from food waste

Albizzati PF, Tonini D, Astrup TF (2021) High-value products from food waste: an environmental and socio-economic assessment. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142466

Article  Google Scholar 

Andersen SJ, Candry P, Basadre T et al (2015) Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation. Biotechnol Biofuels. https://doi.org/10.1186/s13068-015-0396-7

Article  Google Scholar 

Angenent LT, Richter H, Buckel W et al (2016) Chain Elongation with Reactor Microbiomes: Open-Culture Biotechnology to Produce Biochemicals. Environ Sci Technol 50:2796–2810

Article  CAS  Google Scholar 

Annamalai N, Sivakumar N, Fernandez-Castane A, Oleskowicz-Popiel P (2020) Production of microbial lipids utilizing volatile fatty acids derived from wastepaper: a biorefinery approach for biodiesel production. Fuel. https://doi.org/10.1016/j.fuel.2020.118087

Article  Google Scholar 

Atasoy M, Owusu-Agyeman I, Plaza E, Cetecioglu Z (2018) Bio-based volatile fatty acid production and recovery from waste streams: current status and future challenges. Bioresour Technol 268:773–786

Article  CAS  Google Scholar 

Bao S, Wang Q, Zhang P et al (2019) Effect of acid/ethanol ratio on medium chain carboxylate production with different VFAs as the electron acceptor: insight into carbon balance and microbial community. Energies. https://doi.org/10.3390/en12193720

Article  Google Scholar 

Barker HA, Taha SM (1942) Clostridium Kluyverii, an organism concerned in the formation of caproic acid from ethyl alcohol. J Bacteriol 43(3):347–363

Article  CAS  Google Scholar 

Bernstad Saraiva Schott A, Andersson T (2015) Food waste minimization from a life-cycle perspective. J Environ Manage 147:219–226. https://doi.org/10.1016/j.jenvman.2014.07.048

Article  CAS  Google Scholar 

Braguglia CM, Gallipoli A, Gianico A, Pagliaccia P (2018) Anaerobic bioconversion of food waste into energy: a critical review. Bioresour Technol 248:37–56

Article  CAS  Google Scholar 

Bryson S, Li Z, Pett-Ridge J et al (2016) Proteomic Stable isotope probing reveals taxonomically distinct patterns in amino acid assimilation by coastal marine bacterioplankton. mSystems. https://doi.org/10.1128/msystems.00027-15

Article  Google Scholar 

Cabrol L, Malhautier L (2011) Integrating microbial ecology in bioprocess understanding: the case of gas biofiltration. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253

Article  Google Scholar 

Cabrol L, Marone A, Tapia-Venegas E et al (2017) Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function. FEMS Microbiol Rev 41:158–181. https://doi.org/10.1093/femsre/fuw043

Article  CAS  Google Scholar 

Candry P, Ganigué R (2021) Chain elongators, friends, and foes. Curr Opin Biotechnol 67:99–110

Article  CAS  Google Scholar 

Candry P, Radić L, Favere J et al (2020) Mildly acidic pH selects for chain elongation to caproic acid over alternative pathways during lactic acid fermentation. Water Res. https://doi.org/10.1016/j.watres.2020.116396

Article  Google Scholar 

Candry P, Chadwick GL, Caravajal-Arroyo JM et al (2023) Trophic interactions shape the spatial organization of medium-chain carboxylic acid producing granular biofilm communities. ISME J 17:2014–2022. https://doi.org/10.1038/s41396-023-01508-8

Article  CAS  Google Scholar 

Choi K, Jeon BS, Kim BC et al (2013) In situ biphasic extractive fermentation for hexanoic acid production from sucrose by Megasphaera elsdenii NCIMB 702410. Appl Biochem Biotechnol 171:1094–1107. https://doi.org/10.1007/s12010-013-0310-3

Article  CAS  Google Scholar 

Choi H, Son HF, Hwang S et al (2023) Hexanoic acid improves the production of lipid and oleic acid in Yarrowia lipolytica: the benefit of integrating biorefinery with organic waste manaement. Environ Technol Innov. https://doi.org/10.1016/j.eti.2023.103168

Article  Google Scholar 

Chokkathukalam A, Kim DH, Barrett MP et al (2014) Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks. Bioanalysis 6:511–524

Article  CAS  Google Scholar 

Chu N, Hao W, Wu Q et al (2022) Microbial electrosynthesis for producing medium chain fatty acids. Engineering 16:141–153

Article  CAS  Google Scholar 

Collins MD, Lawson PA, Willems A, et al (1994) Phylogenetic relationships of the Genera Acetobacterium and Eubacterium Sensu Stricto and reclassification of Eubacterium alactolyticum as Pseudoramibacter alactolyticus gen. nov., comb. nov.

Coma M, Vilchez-Vargas R, Roume H et al (2016) product diversity linked to substrate usage in chain elongation by mixed-culture fermentation. Environ Sci Technol 50:6467–6476. https://doi.org/10.1021/acs.est.5b06021

Article  CAS  Google Scholar 

Contreras-Dávila CA, Carrión VJ, Vonk VR et al (2020) Consecutive lactate formation and chain elongation to reduce exogenous chemicals input in repeated-batch food waste fermentation. Water Res. https://doi.org/10.1016/j.watres.2019.115215

Article  Google Scholar 

Crognale S, Braguglia CM, Gallipoli A et al (2021) Direct conversion of food waste extract into caproate: metagenomics assessment of chain elongation process. Microorganisms 9:1–20. https://doi.org/10.3390/microorganisms9020327

Article  CAS  Google Scholar 

Crognale S, Massimi A, Sbicego M et al (2023) Ecology of food waste chain-elongating microbiome. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2023.1157243

Article  Google Scholar 

Dahiya S, Mohan SV (2019) Selective control of volatile fatty acids production from food waste by regulating biosystem buffering: a comprehensive study. Chem Eng J 357:787–801. https://doi.org/10.1016/j.cej.2018.08.138

Article  CAS  Google Scholar 

de AraújoCavalcante W, Leitão RC, Gehring TA et al (2017) Anaerobic fermentation for n-caproic acid production: a review. Process Biochem 54(106):119

Google Scholar 

De Groof V, Coma M, Arnot TC et al (2020) Adjusting organic load as a strategy to direct single-stage food waste fermentation from anaerobic digestion to chain elongation. Processes 8:1–18. https://doi.org/10.3390/pr8111487

Article  CAS  Google Scholar 

De Groof V, Coma M, Arnot T et al (2021) Selecting fermentation products for food waste valorisation with HRT and OLR as the key operational parameters. Waste Manage 127:80–89. https://doi.org/10.1016/j.wasman.2021.04.023

Article  CAS  Google Scholar 

Debergh P, Van Dael M (2022) Production of caproic acid from acetate and ethanol through microbial chain elongation: a techno-economic assessment. Bioresour Technol Rep. https://doi.org/10.1016/j.biteb.2022.101055

Article  Google Scholar 

Diender M, Parera Olm I, Gelderloos M et al (2019) Metabolic shift induced by synthetic co-cultivation promotes high yield of chain elongated acids from syngas. Sci Rep. https://doi.org/10.1038/s41598-019-54445-y

Article  Google Scholar 

Duber A, Jaroszynski L, Zagrodnik R, Chwialkowska J, Juzwa W, Ciesielski S, Oleskowicz-Popiel P (2018) Exploiting the real wastewater potential for resource recovery-: n-caproate production from acid whey. Green Chem 20(16):3790–3803. https://doi.org/10.1039/c8gc01759j

Article  CAS  Google Scholar 

Elsden SR, Volcani BE, GilchristLewis FMCD (1956) Properties of a fatty acid forming organism isolated from the rumen of sheep. J Bacteriol 72(5):681–689. https://doi.org/10.1128/jb.72.5.681-689.1956

Article  CAS  Google Scholar 

Esquivel-Elizondo S, Bağcı C, Temovska M et al (2021) The isolate Caproiciproducens sp. 7D4C2 produces n-Caproate at mildly acidicconditions from hexoses: genome and rBOX comparison with related strains and chain-elongating bacteria. Front Microbiol. https://doi.org/10.3389/fmicb.2020.594524

Article  Google Scholar 

Eurostat (2023) Bio-waste in Europe-turning challenges into opportunities. Stat Explain. https://doi.org/10.2800/630938

Article  Google Scholar 

Fisgativa H, Tremier A, Dabert P (2016) Characterizing the variability of food waste quality: a need for efficient valorisation through anaerobic digestion. Waste Manage 50:264–274. https://doi.org/10.1016/j.wasman.2016.01.041

Article  CAS  Google Scholar 

Flaiz M, Baur T, Brahner S et al (2020) Caproicibacter fermentans gen. Nov., sp. nov., a new caproate-producing bacterium and emended description of the genus caproiciproducens. Int J Syst Evol Microbiol 70:4269–4279. https://doi.org/10.1099/ijsem.0.004283

Article  CAS  Google Scholar 

Gazzola G, Maria Braguglia C, Crognale S et al (2022) Biorefining food waste through the anaerobic conversion of endogenous lactate into caproate: a fragile balance between microbial substrate utilization and product inhibition. Waste Manage 150:328–338. https://doi.org/10.1016/j.wasman.2022.07.031

Article  CAS 

留言 (0)

沒有登入
gif