Albizzati PF, Tonini D, Astrup TF (2021) High-value products from food waste: an environmental and socio-economic assessment. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142466
Andersen SJ, Candry P, Basadre T et al (2015) Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation. Biotechnol Biofuels. https://doi.org/10.1186/s13068-015-0396-7
Angenent LT, Richter H, Buckel W et al (2016) Chain Elongation with Reactor Microbiomes: Open-Culture Biotechnology to Produce Biochemicals. Environ Sci Technol 50:2796–2810
Annamalai N, Sivakumar N, Fernandez-Castane A, Oleskowicz-Popiel P (2020) Production of microbial lipids utilizing volatile fatty acids derived from wastepaper: a biorefinery approach for biodiesel production. Fuel. https://doi.org/10.1016/j.fuel.2020.118087
Atasoy M, Owusu-Agyeman I, Plaza E, Cetecioglu Z (2018) Bio-based volatile fatty acid production and recovery from waste streams: current status and future challenges. Bioresour Technol 268:773–786
Bao S, Wang Q, Zhang P et al (2019) Effect of acid/ethanol ratio on medium chain carboxylate production with different VFAs as the electron acceptor: insight into carbon balance and microbial community. Energies. https://doi.org/10.3390/en12193720
Barker HA, Taha SM (1942) Clostridium Kluyverii, an organism concerned in the formation of caproic acid from ethyl alcohol. J Bacteriol 43(3):347–363
Bernstad Saraiva Schott A, Andersson T (2015) Food waste minimization from a life-cycle perspective. J Environ Manage 147:219–226. https://doi.org/10.1016/j.jenvman.2014.07.048
Braguglia CM, Gallipoli A, Gianico A, Pagliaccia P (2018) Anaerobic bioconversion of food waste into energy: a critical review. Bioresour Technol 248:37–56
Bryson S, Li Z, Pett-Ridge J et al (2016) Proteomic Stable isotope probing reveals taxonomically distinct patterns in amino acid assimilation by coastal marine bacterioplankton. mSystems. https://doi.org/10.1128/msystems.00027-15
Cabrol L, Malhautier L (2011) Integrating microbial ecology in bioprocess understanding: the case of gas biofiltration. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253
Cabrol L, Marone A, Tapia-Venegas E et al (2017) Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function. FEMS Microbiol Rev 41:158–181. https://doi.org/10.1093/femsre/fuw043
Candry P, Ganigué R (2021) Chain elongators, friends, and foes. Curr Opin Biotechnol 67:99–110
Candry P, Radić L, Favere J et al (2020) Mildly acidic pH selects for chain elongation to caproic acid over alternative pathways during lactic acid fermentation. Water Res. https://doi.org/10.1016/j.watres.2020.116396
Candry P, Chadwick GL, Caravajal-Arroyo JM et al (2023) Trophic interactions shape the spatial organization of medium-chain carboxylic acid producing granular biofilm communities. ISME J 17:2014–2022. https://doi.org/10.1038/s41396-023-01508-8
Choi K, Jeon BS, Kim BC et al (2013) In situ biphasic extractive fermentation for hexanoic acid production from sucrose by Megasphaera elsdenii NCIMB 702410. Appl Biochem Biotechnol 171:1094–1107. https://doi.org/10.1007/s12010-013-0310-3
Choi H, Son HF, Hwang S et al (2023) Hexanoic acid improves the production of lipid and oleic acid in Yarrowia lipolytica: the benefit of integrating biorefinery with organic waste manaement. Environ Technol Innov. https://doi.org/10.1016/j.eti.2023.103168
Chokkathukalam A, Kim DH, Barrett MP et al (2014) Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks. Bioanalysis 6:511–524
Chu N, Hao W, Wu Q et al (2022) Microbial electrosynthesis for producing medium chain fatty acids. Engineering 16:141–153
Collins MD, Lawson PA, Willems A, et al (1994) Phylogenetic relationships of the Genera Acetobacterium and Eubacterium Sensu Stricto and reclassification of Eubacterium alactolyticum as Pseudoramibacter alactolyticus gen. nov., comb. nov.
Coma M, Vilchez-Vargas R, Roume H et al (2016) product diversity linked to substrate usage in chain elongation by mixed-culture fermentation. Environ Sci Technol 50:6467–6476. https://doi.org/10.1021/acs.est.5b06021
Contreras-Dávila CA, Carrión VJ, Vonk VR et al (2020) Consecutive lactate formation and chain elongation to reduce exogenous chemicals input in repeated-batch food waste fermentation. Water Res. https://doi.org/10.1016/j.watres.2019.115215
Crognale S, Braguglia CM, Gallipoli A et al (2021) Direct conversion of food waste extract into caproate: metagenomics assessment of chain elongation process. Microorganisms 9:1–20. https://doi.org/10.3390/microorganisms9020327
Crognale S, Massimi A, Sbicego M et al (2023) Ecology of food waste chain-elongating microbiome. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2023.1157243
Dahiya S, Mohan SV (2019) Selective control of volatile fatty acids production from food waste by regulating biosystem buffering: a comprehensive study. Chem Eng J 357:787–801. https://doi.org/10.1016/j.cej.2018.08.138
de AraújoCavalcante W, Leitão RC, Gehring TA et al (2017) Anaerobic fermentation for n-caproic acid production: a review. Process Biochem 54(106):119
De Groof V, Coma M, Arnot TC et al (2020) Adjusting organic load as a strategy to direct single-stage food waste fermentation from anaerobic digestion to chain elongation. Processes 8:1–18. https://doi.org/10.3390/pr8111487
De Groof V, Coma M, Arnot T et al (2021) Selecting fermentation products for food waste valorisation with HRT and OLR as the key operational parameters. Waste Manage 127:80–89. https://doi.org/10.1016/j.wasman.2021.04.023
Debergh P, Van Dael M (2022) Production of caproic acid from acetate and ethanol through microbial chain elongation: a techno-economic assessment. Bioresour Technol Rep. https://doi.org/10.1016/j.biteb.2022.101055
Diender M, Parera Olm I, Gelderloos M et al (2019) Metabolic shift induced by synthetic co-cultivation promotes high yield of chain elongated acids from syngas. Sci Rep. https://doi.org/10.1038/s41598-019-54445-y
Duber A, Jaroszynski L, Zagrodnik R, Chwialkowska J, Juzwa W, Ciesielski S, Oleskowicz-Popiel P (2018) Exploiting the real wastewater potential for resource recovery-: n-caproate production from acid whey. Green Chem 20(16):3790–3803. https://doi.org/10.1039/c8gc01759j
Elsden SR, Volcani BE, GilchristLewis FMCD (1956) Properties of a fatty acid forming organism isolated from the rumen of sheep. J Bacteriol 72(5):681–689. https://doi.org/10.1128/jb.72.5.681-689.1956
Esquivel-Elizondo S, Bağcı C, Temovska M et al (2021) The isolate Caproiciproducens sp. 7D4C2 produces n-Caproate at mildly acidicconditions from hexoses: genome and rBOX comparison with related strains and chain-elongating bacteria. Front Microbiol. https://doi.org/10.3389/fmicb.2020.594524
Eurostat (2023) Bio-waste in Europe-turning challenges into opportunities. Stat Explain. https://doi.org/10.2800/630938
Fisgativa H, Tremier A, Dabert P (2016) Characterizing the variability of food waste quality: a need for efficient valorisation through anaerobic digestion. Waste Manage 50:264–274. https://doi.org/10.1016/j.wasman.2016.01.041
Flaiz M, Baur T, Brahner S et al (2020) Caproicibacter fermentans gen. Nov., sp. nov., a new caproate-producing bacterium and emended description of the genus caproiciproducens. Int J Syst Evol Microbiol 70:4269–4279. https://doi.org/10.1099/ijsem.0.004283
Gazzola G, Maria Braguglia C, Crognale S et al (2022) Biorefining food waste through the anaerobic conversion of endogenous lactate into caproate: a fragile balance between microbial substrate utilization and product inhibition. Waste Manage 150:328–338. https://doi.org/10.1016/j.wasman.2022.07.031
留言 (0)