Strategies for heavy metals immobilization in municipal solid waste incineration bottom ash: a critical review

Abd Elnabi MK, Elkaliny NE, Elyazied MM, Azab SH, Elkhalifa SA, Elmasry S, Mouhamed MS, Shalamesh EM, Alhorieny NA, Abd Elaty AE, Elgendy IM, Etman AE, Saad KE, Tsigkou K, Ali SS, Kornaros M, YaG M (2023) Toxicity of heavy metals and recent advances in their removal: a review. Toxics 11:580. https://doi.org/10.3390/toxics11070580

Article  CAS  Google Scholar 

Abdel-Shafy HI, Ibrahim AM, Al-Sulaiman AM, Okasha RA (2024) Landfill leachate: sources, nature, organic composition, and treatment: an environmental overview. Ain Shams Eng J 15:102293. https://doi.org/10.1016/j.asej.2023.102293

Article  Google Scholar 

Al Bakri Abdullah MM, Kamarudin H, Binhussain M, Nizar K, Abdul Razak R, Izzat AM (2011) Chemical reactions in the geopolymerisation process using fly ash–based geopolymer: a review. Aust. J. Basic Appl. Sci. 5:1199–1203

Google Scholar 

Alam Q, Schollbach K, Rijnders M, Van Hoek C, Van Der Laan S, Brouwers HJH (2019) The immobilization of potentially toxic elements due to incineration and weathering of bottom ash fines. J Hazard Mater 379:120798. https://doi.org/10.1016/j.jhazmat.2019.120798

Article  CAS  Google Scholar 

Al-Ejji M, Hassan MK, Youssef K, Elmakaty F, Mehanna H, Sliem M, Irshidat M (2023) Novel surface-treatment for bottom ash from municipal solid waste incineration to reduce the heavy metals leachability for a sustainable environment. J Environ Manag 347:119105. https://doi.org/10.1016/j.jenvman.2023.119105

Article  CAS  Google Scholar 

Amran YHM, Alyousef R, Alabduljabbar H, El-Zeadani M (2020) Clean production and properties of geopolymer concrete; a review. J Clean Prod 251:119679. https://doi.org/10.1016/j.jclepro.2019.119679

Article  CAS  Google Scholar 

Amran M, Al-Fakih A, Chu SH, Fediuk R, Haruna S, Azevedo A, Vatin N (2021) Long-term durability properties of geopolymer concrete: an in-depth review. Case Stud Constr Mater 15:e00661. https://doi.org/10.1016/j.cscm.2021.e00661

Article  Google Scholar 

Anastasiadou K, Christopoulos K, Mousios E, Gidarakos E (2012) Solidification/stabilization of fly and bottom ash from medical waste incineration facility. J Hazard Mater 207–208:165–170. https://doi.org/10.1016/j.jhazmat.2011.05.027

Article  CAS  Google Scholar 

Andreola F, Barbieri L, Queiroz Soares B, Karamanov A, Schabbach LM, Bernardin AM, Pich CT (2019) Toxicological analysis of ceramic building materials—tiles and glasses—obtained from post-treated bottom ashes. Waste Manag 98:50–57. https://doi.org/10.1016/j.wasman.2019.08.008

Article  CAS  Google Scholar 

Anubhav S, Anuj S, Rohit KV, Rushikesh LC, Pritam PP, Varad N, Vinay A, Sumit KC, Garima A, Kumud KA, Mahipal SS (2022) Heavy metal contamination of water and their toxic effect on living organisms. In: Dorta DJ, Palma de Oliveira D (eds) The toxicity of environmental pollutants. IntechOpen, London. https://doi.org/10.5772/intechopen.105075

Chapter  Google Scholar 

Arickx S, Van Gerven T, Knaepkens T, Hindrix K, Evens R, Vandecasteele C (2007) Influence of treatment techniques on Cu leaching and different organic fractions in MSWI bottom ash leachate. Waste Manag 27:1422–1427. https://doi.org/10.1016/j.wasman.2007.03.015

Article  CAS  Google Scholar 

Ariffin MAM, Bhutta MAR, Hussin MW, Mohd Tahir M, Aziah N (2013) Sulfuric acid resistance of blended ash geopolymer concrete. Constr Build Mater 43:80–86. https://doi.org/10.1016/j.conbuildmat.2013.01.018

Article  Google Scholar 

Ashraf MS, Ghouleh Z, Shao Y (2019) Production of eco-cement exclusively from municipal solid waste incineration residues. Resour Conserv Recycl 149:332–342. https://doi.org/10.1016/j.resconrec.2019.06.018

Article  Google Scholar 

Astrup T, Muntoni A, Polettini A, Pomi R, Van Gerven T, Van Zomeren A (2016) Chapter 24—Treatment and reuse of incineration bottom ash. In: Prasad MNV, Shih K (eds) Environmental materials and waste. Academic Press, New York, pp 607–645. https://doi.org/10.1016/B978-0-12-803837-6.00024-X

Chapter  Google Scholar 

Baek JW, Mallampati SR, Park HS (2016) Novel synthesis and applications of Thiomer solidification for heavy metals immobilization in hazardous ASR/ISW thermal residue. Waste Manag 49:181–187. https://doi.org/10.1016/j.wasman.2015.12.030

Article  CAS  Google Scholar 

Bayuseno AP, Schmahl WW (2010) Understanding the chemical and mineralogical properties of the inorganic portion of MSWI bottom ash. Waste Manage 30:1509–1520. https://doi.org/10.1016/j.wasman.2010.03.010

Article  CAS  Google Scholar 

Beikmohammadi M, Yaghmaeian K, Nabizadeh R, Mahvi AH (2023) Analysis of heavy metal, rare, precious, and metallic element content in bottom ash from municipal solid waste incineration in Tehran based on particle size. Sci Rep 13:16044. https://doi.org/10.1038/s41598-023-43139-1

Article  CAS  Google Scholar 

Bendouma S, Serradj T, Vapur H (2020) A case study of the life cycle impact of limestone quarrying on the environment. Int J Glob Warm 22:432–447. https://doi.org/10.1504/IJGW.2020.111518

Article  Google Scholar 

Berkhout SP, Oudenhoven BP, Rem PC (2011) Optimizing non-ferrous metal value from MSWI bottom ashes. J Environ Prot 2:564. https://doi.org/10.4236/jep.2011.25065

Article  CAS  Google Scholar 

Biganzoli L, Ilyas A, Praagh MV, Persson KM, Grosso M (2013) Aluminium recovery vs. hydrogen production as resource recovery options for fine MSWI bottom ash fraction. Waste Manag 33:1174–1181. https://doi.org/10.1016/j.wasman.2013.01.037

Article  CAS  Google Scholar 

Biswal BK, Chen ZT, Yang EH (2019) Hydrothermal process reduced <i>Pseudomonas aeruginosa</i> PAO1-driven bioleaching of heavy metals in a novel aerated concrete synthesized using municipal solid waste incineration bottom ash. Chem Eng J 360:1082–1091. https://doi.org/10.1016/j.cej.2018.10.155

Article  CAS  Google Scholar 

Blasenbauer D, Huber F, Lederer J, Quina MJ, Blanc-Biscarat D, Bogush A, Bontempi E, Blondeau J, Chimenos JM, Dahlbo H, Fagerqvist J, Giro-Paloma J, Hjelmar O, Hyks J, Keaney J, Lupsea-Toader M, O’caollai CJ, Orupõld K, Pająk T, Simon F-G, Svecova L, Šyc M, Ulvang R, Vaajasaari K, Van Caneghem J, Van Zomeren A, Vasarevičius S, Wégner K, Fellner J (2020) Legal situation and current practice of waste incineration bottom ash utilisation in Europe. Waste Manag 102:868–883. https://doi.org/10.1016/j.wasman.2019.11.031

Article  Google Scholar 

Blasenbauer D, Huber F, Mühl J, Fellner J, Lederer J (2023) Comparing the quantity and quality of glass, metals, and minerals present in waste incineration bottom ashes from a fluidized bed and a grate incinerator. Waste Manage 161:142–155. https://doi.org/10.1016/j.wasman.2023.02.021

Article  CAS  Google Scholar 

Boca Santa RAA, Soares C, Riella HG (2016) Geopolymers with a high percentage of bottom ash for solidification/immobilization of different toxic metals. J. Hazard. Mater. 318:145–153. https://doi.org/10.1016/j.jhazmat.2016.06.059

Article  CAS  Google Scholar 

Bolan NS, Park JH, Robinson B, Naidu R, Huh KY (2011) Chapter four—phytostabilization: a green approach to contaminant containment. In: Sparks DL (ed) Advances in agronomy, vol 112. Academic Press, New York, pp 145–204. https://doi.org/10.1016/B978-0-12-385538-1.00004-4

Chapter  Google Scholar 

Borah P, Rene ER, Rangan L, Mitra S (2023) Phytoremediation of nickel and zinc using Jatropha curcas and Pongamia pinnata from the soils contaminated by municipal solid wastes and paper mill wastes. Environ Res 219:115055. https://doi.org/10.1016/j.envres.2022.115055

Article  CAS  Google Scholar 

Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6:e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

Article  CAS  Google Scholar 

Cao J, Sim Y, Tan XY, Zheng J, Chien SW, Jia N, Chen K, Tay YB, Dong J-F, Yang L, Ng HK, Liu H, Tan CKI, Xie G, Zhu Q, Li Z, Zhang G, Hu L, Zheng Y, Xu J, Yan Q, Loh XJ, Mathews N, Wu J, Suwardi A (2022) Upcycling silicon photovoltaic waste into thermoelectrics. Adv Mater 34:2110518. https://doi.org/10.1002/adma.202110518

Article  CAS  Google Scholar 

Caprai V, Schollbach K, Brouwers HJH (2018) Influence of hydrothermal treatment on the mechanical and environmental performances of mortars including MSWI bottom ash. Waste Manag 78:639–648. https://doi.org/10.1016/j.wasman.2018.06.030

Article  CAS  Google Scholar 

Caprai V, Schollbach K, Florea MVA, Brouwers HJH (2020) Investigation of the hydrothermal treatment for maximizing the MSWI bottom ash content in fine lightweight aggregates. Constr Build Mater 230:116947. https://doi.org/10.1016/j.conbuildmat.2019.116947

Article  CAS  Google Scholar 

Chandler AJ, Eighmy TT, Hartlén J, Hjelmar O, Kosson DS, Sawell SE, Van Der Sloot HA, Vehlow J (1997) Chapter 9—Bottom ash. In: Chandler AJ et al (eds) Municipal solid waste incinerator residues, vol 67. Elsevier, Amsterdam, pp 339–417. https://doi.org/10.1016/S0166-1116(97)80015-5

Chapter  Google Scholar 

Chen Z, Liu Y, Zhu W, Yang E-H (2016) Incinerator bottom ash (IBA) aerated geopolymer. Constr Build Mater 112:1025–1031. https://doi.org/10.1016/j.conbuildmat.2016.02.164

Article  CAS  Google Scholar 

Chen B, Perumal P, Illikainen M, Ye G (2023a) A review on the utilization of municipal solid waste incineration (MSWI) bottom ash as a mineral resource for construction materials. J Build Eng 71:106386. https://doi.org/10.1016/j.jobe.2023.106386

留言 (0)

沒有登入
gif