State-of-the-art in the accumulation of lipids and other bioproducts from sustainable sources by Yarrowia lipolytica

Abeln F, Chuck CJ (2021) The history, state of the art and future prospects for oleaginous yeast research. Microb Cell Factor 20:1–31. https://doi.org/10.1186/S12934-021-01712-1

Article  Google Scholar 

Aguedo M, Ly MH, Belo I et al (2004) The use of enzymes and microorganisms for the production of aroma compounds from lipids. Food Technol Biotechnol 42:327–336

CAS  Google Scholar 

Aguedo M, Waché Y, Belin J-M, Teixeira JA (2005) Surface properties of Yarrowia lipolytica and their relevance to γ-decalactone formation from methyl ricinoleate. Biotechnol Lett 27:417–422. https://doi.org/10.1007/s10529-005-1776-z

Article  CAS  Google Scholar 

Al Mualad WNA, Bouchedja DN, Selmania A et al (2022) Yeast Yarrowia lipolytica as a biofactory for the production of lactone-type aroma gamma-decalactone using castor oil as substrate. Chem Pap 76:7715–7728. https://doi.org/10.1007/s11696-022-02435-2

Article  CAS  Google Scholar 

An J-U, Joo Y-C, Oh D-K (2013) New biotransformation process for production of the fragrant compound γ-Dodecalactone from 10-Hydroxystearate by permeabilized Waltomyces lipofer Cells. Appl Environ Microbiol 79:2636–2641. https://doi.org/10.1128/AEM.02602-12

Article  CAS  Google Scholar 

Bankar AV, Kumar AR, Zinjarde SS (2009) Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol 84:847–865. https://doi.org/10.1007/S00253-009-2156-8/FIGURES/6

Article  CAS  Google Scholar 

Bao W, Li Z, Wang X et al (2021) Approaches to improve the lipid synthesis of oleaginous yeast Yarrowia lipolytica: a review. Renew Sustain Energy Rev 149:111386. https://doi.org/10.1016/J.RSER.2021.111386

Article  CAS  Google Scholar 

Baumann I, Westermann P (2016) Microbial production of short chain fatty acids from lignocellulosic biomass: current processes and market. Biomed Res Int 2016:846935. https://doi.org/10.1155/2016/8469357

Article  CAS  Google Scholar 

Bellou S, Makri A, Triantaphyllidou I-E et al (2014) Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment. Microbiology 160:807–817. https://doi.org/10.1099/mic.0.074302-0

Article  CAS  Google Scholar 

Bellou S, Triantaphyllidou IE, Mizerakis P, Aggelis G (2016) High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium. J Biotechnol 234:116–126. https://doi.org/10.1016/J.JBIOTEC.2016.08.001

Article  CAS  Google Scholar 

Ben M, Kennes C, Veiga MC (2016) Optimization of polyhydroxyalkanoate storage using mixed cultures and brewery wastewater. J Chem Technol Biotechnol 91:2817–2826. https://doi.org/10.1002/JCTB.4891

Article  CAS  Google Scholar 

Beopoulos A, Chardot T, Nicaud JM (2009) Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91:692–696. https://doi.org/10.1016/J.BIOCHI.2009.02.004

Article  CAS  Google Scholar 

Berman J, Zorrilla-López U, Sandmann G et al (2017) The silencing of carotenoid β-Hydroxylases by RNA interference in different maize genetic backgrounds increases the β-carotene content of the endosperm. Int J Mol Sci 18:2515. https://doi.org/10.3390/IJMS18122515

Article  Google Scholar 

Bermúdez-Penabad N, Kennes C, Veiga MC (2017) Anaerobic digestion of tuna waste for the production of volatile fatty acids. Waste Manag (new York, NY) 68:96–102. https://doi.org/10.1016/J.WASMAN.2017.06.010

Article  Google Scholar 

Bhutada G, Menard G, Bhunia RK et al (2022) Production of human milk fat substitute by engineered strains of Yarrowia lipolytica. Metab Eng Commun 14:e00192. https://doi.org/10.1016/J.MEC.2022.E00192

Article  CAS  Google Scholar 

Blazeck J, Hill A, Liu L et al (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5:1–10. https://doi.org/10.1038/ncomms4131

Article  CAS  Google Scholar 

Bonatsos N, Marazioti C, Moutousidi E et al (2020) Techno-economic analysis and life cycle assessment of heterotrophic yeast-derived single cell oil production process. Fuel 264:116839. https://doi.org/10.1016/J.FUEL.2019.116839

Article  CAS  Google Scholar 

Braga A, Belo I (2016) Biotechnological production of γ-decalactone, a peach like aroma, by Yarrowia lipolytica. World J Microbiol Biotechnol 32:1–8. https://doi.org/10.1007/S11274-016-2116-2

Article  CAS  Google Scholar 

Brígida AIS, Amaral PFF, Coelho MAZ, Gonçalves LRB (2014) Lipase from Yarrowia lipolytica: Production, characterization and application as an industrial biocatalyst. J Mol Catal B Enzym 101:148–158. https://doi.org/10.1016/J.MOLCATB.2013.11.016

Article  Google Scholar 

Bruder S, Melcher FA, Zoll T et al (2020) Evaluation of a Yarrowia lipolytica strain collection for its lipid and carotenoid production capabilities. Eur J Lipid Sci Technol 122:1900172. https://doi.org/10.1002/EJLT.201900172

Article  CAS  Google Scholar 

Cao L, Yin M, Shi TQ et al (2022) Engineering Yarrowia lipolytica to produce nutritional fatty acids: current status and future perspectives. Syn Syst Biotechnol 7:1024–1033. https://doi.org/10.1016/J.SYNBIO.2022.06.002

Article  CAS  Google Scholar 

Carsanba E, Papanikolaou S, Erten H (2018) Production of oils and fats by oleaginous microorganisms with an emphasis given to the potential of the nonconventional yeast Yarrowia lipolytica. Crit Rev Biotechnol 38:1230–1243. https://doi.org/10.1080/07388551.2018.1472065

Article  CAS  Google Scholar 

Carsanba E, Papanikolaou S, Fickers P, Erten H (2020) Lipids by Yarrowia lipolytica strains cultivated on glucose in batch cultures. Microorganisms 8:1–14. https://doi.org/10.3390/MICROORGANISMS8071054

Article  Google Scholar 

Cavallo E, Charreau H, Cerrutti P, Foresti ML (2017) Yarrowia lipolytica: a model yeast for citric acid production. FEMS Yeast Res 17:fox084. https://doi.org/10.1093/FEMSYR/FOX084

Article  Google Scholar 

Cavallo E, Nobile M, Cerrutti P, Foresti ML (2020) Exploring the production of citric acid with Yarrowia lipolytica using corn wet milling products as alternative low-cost fermentation media. Biochem Eng J 155:107463. https://doi.org/10.1016/J.BEJ.2019.107463

Article  CAS  Google Scholar 

Chai B, Wang Y, Wang W, Fan P (2019) Effect of carbon source on lipid accumulation and biodiesel production of Yarrowia lipolytica. Environ Sci Pollut Res Int 26:31234–31242. https://doi.org/10.1007/S11356-019-06249-W

Article  CAS  Google Scholar 

Cheirsilp B, Louhasakul Y (2013) Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel. Biores Technol 142:329–337. https://doi.org/10.1016/J.BIORTECH.2013.05.012

Article  CAS  Google Scholar 

Daskalaki A, Vasiliadou IA, Bellou S et al (2018) Data on cellular lipids of Yarrowia lipolytica grown on fatty substrates. Data Brief 21:1037–1044. https://doi.org/10.1016/j.dib.2018.10.116

Article  Google Scholar 

Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531. https://doi.org/10.1016/j.apenergy.2011.04.018

Article  Google Scholar 

Destain J, Roblain D, Thonart P (1997) Improvement of lipase production from Yarrowia lipolytica. Biotech Lett 19:105–108. https://doi.org/10.1023/A:1018339709368/METRICS

Article  CAS  Google Scholar 

Dobrowolski A, Mituła P, Rymowicz W, Mirończuk AM (2016) Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Biores Technol 207:237–243. https://doi.org/10.1016/J.BIORTECH.2016.02.039

Article  CAS  Google Scholar 

Dong T, Knoshaug EP, Pienkos PT, Laurens LML (2016) Lipid recovery from wet oleaginous microbial biomass for biofuel production: a critical review. Appl Energy 177:879–895. https://doi.org/10.1016/j.apenergy.2016.06.002

Article  CAS  Google Scholar 

Drabik D, Venus T (2019) EU biofuel policies for road and rail transportation sector. In: EU bioeconomy economics and policies. EU bioeconomy economics and policies: Volume II, pp 257–276

El Kantar S, Koubaa M (2022) Valorization of low-cost substrates for the production of odd chain fatty acids by the Oleaginous Yeast Yarrowia lipolytica. Fermentation 8:284. https://doi.org/10.3390/FERMENTATION8060284

Article  Google Scholar 

Enshaeieh M, Abdoli A, Nahvi I, Madani M (2012) Selection and optimization of single cell oil production from Rodotorula 110 using environmental waste as substrate. J Cell Mol Res 4:68–75

Google Scholar 

Fernández-Naveira Á, Veiga MC, Kennes C (2017) H-B-E (hexanol-butanol-ethanol) fermentation for the production of higher alcohols from syngas/waste gas. J Chem Technol Biotechnol 92:712–731. https://doi.org/10.1002/JCTB.5194

Article  Google Scholar 

Fickers P, Benetti PH, Waché Y et al (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543. https://doi.org/10.1016/J.FEMSYR.2004.09.004

Article  CAS  Google Scholar 

Fitzherbert EB, Struebig MJ, Morel A et al (2008) How will oil palm expansion affect biodiversity? Trends Ecol Evol 23:538–545. https://doi.org/10.1016/J.TREE.2008.06.012

Article  Google Scholar 

Fontanille P, Kumar V, Christophe G et al (2012) Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Biores Technol 114:443–449. https://doi.org/10.1016/J.BIORTECH.2012.02.091

Article  CAS  Google Scholar 

Gao R, Li Z, Zhou X et al (2017) Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production. Biotechnol Biofuels 10:1–15. https://doi.org/10.1186/S13068-017-0942-6/TABLES/6

Article  Google Scholar 

Gao R, Li Z, Zhou X et al (2020) Enhanced lipid production by Yarrowia lipolytica cultured with synthetic and waste-derived high-content volatile fatty acids under alkaline conditions. Biotechnol Biofuels 13:1–16. https://doi.org/10.1186/S13068-019-1645-Y/TABLES/5

Article  Google Scholar 

García-Franco A, Godoy P, de la Torre J et al (2021) United Nations sustainability development goals approached from the side of the biological production of fuels. Microb Biotechnol 14:1871–1877. https://doi.org/10.1111/1751-7915.13912

留言 (0)

沒有登入
gif