Global Tuberculosis Report, Geneva (2020) World Health Organization
Rook G, Bloom BR (1994) Mechanisms of Pathogenesis in Tuberculosis, Bloom BR (Editor), ASM Press, Washington
Hernández-Pando R, Jeyanathan M, Mengistu G, Aguilar D, Orozco H, Harboe M et al (2000) Persistence of DNA from Mycobacterium Tuberculosis in superficially normal lung tissue during latent infection. Lancet 356(9248):2133–2138. https://doi.org/10.1016/s0140-6736(00)03493-0
Ernst JD (1998) Macrophage receptors for Mycobacterium Tuberculosis. Infect Immun 66(4):1277–1281. https://doi.org/10.1128/IAI.66.4.1277-1281.1998
Article CAS PubMed PubMed Central Google Scholar
Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D et al (1998) Deciphering the biology of Mycobacterium Tuberculosis from the complete genome sequence. Nature 393(6685):537–544. https://doi.org/10.1038/31159
Article CAS PubMed Google Scholar
Chitale S, Ehrt S, Kawamura I, Fujimura T, Shimono N, Anand N et al (2001) Recombinant Mycobacterium tuberculosis protein associated with mammalian cell entry. Cell Microbiol 3(4):247–254. https://doi.org/10.1046/j.1462-5822.2001.00110.x
Article CAS PubMed Google Scholar
Singh P, Katoch VM, Mohanty KK, Chauhan DS (2016) Analysis of expression profile of mce operon genes (Mce1, Mce2, Mce3 Operon) in Different Mycobacterium Tuberculosis Isolates at different growth phases. Indian J Med Res 143(4):487–494. https://doi.org/10.4103/0971-5916.184305
Article CAS PubMed PubMed Central Google Scholar
Arruda S, Bomfim G, Knights R, Huima-Byron T, Riley LW (1993) Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261(5127):1454–1457. https://doi.org/10.1126/science.8367727
Article CAS PubMed Google Scholar
Casali N, Konieczny M, Schmidt MA, Riley LW (2002) Invasion activity of a M. tuberculosis peptide presented by the Escherichia coli AIDA autotransporter. Infect Immun 70(12):6846–6852. https://doi.org/10.1128/IAI.70.12.6846-6852.2002
Article CAS PubMed PubMed Central Google Scholar
Uchida Y, Casali N, White A, Morici L, Kendall LV, Riley LW (2007) Accelerated immunopathological response of mice infected with M. tuberculosis disrupted in the Mce1 operon negative transcriptional regulator. Cell Microbiol 9(5):1275–1283. https://doi.org/10.1111/j.1462-5822.2006.00870.x
Article CAS PubMed Google Scholar
Senaratne RH, Sidders B, Sequeira P, Saunders G, Dunphy K, Marjanovic O et al (2008) M. tuberculosis strains disrupted in Mce3 and Mce4 operons are attenuated in mice. J Med Microbiol 57(2):164–170. https://doi.org/10.1099/jmm.0.47454-0
Article CAS PubMed Google Scholar
Saini NK, Sharma M, Chandolia A, Pasricha R, Brahmachari V, Bose M (2008) Characterization of Mce4A protein of M. tuberculosis: role in invasion and survival. BMC Microbiol 8(1):200. https://doi.org/10.1186/1471-2180-8-200
Article CAS PubMed PubMed Central Google Scholar
Mitra D, Saha B, Das D, Wiker HG, Das AK (2005) Correlating sequential homology of Mce1A, Mce2A, Mce3A and Mce4A with their possible functions in mammalian cell entry of M. tuberculosis performing homology modeling. Tuberculosis (Edinb) 85:337–345
Article CAS PubMed Google Scholar
Zhang F, Xie JP (2011) Mammalian cell entry gene family of M. tuberculosis. Mol Cell Biochem 352(1–2):1–10. https://doi.org/10.1007/s11010-011-0733-5
Article CAS PubMed Google Scholar
Ahmad S, Shazly E, Mustafa S, Al Attiyah R (2005) The six mammalian cell entry proteins (Mce3A-F) encoded by the Mce3 operon are expressed during in vitro growth of M. tuberculosis. Scandinavian J Immunol 62(1):16–24
Marjanovic O, Miyata T, Goodridge A, Kendall LV, Riley LW (2010) Mce2 operon mutant strain of M. tuberculosis is attenuated in C57BL/6 mice. Tuberculosis (Edinb) 90(1):50–56. https://doi.org/10.1016/j.tube.2009.10.004
Article CAS PubMed Google Scholar
Flesselles B, Anand NN, Remani J, Loosmore SM, Klein MH (1999) Disruption of the mycobacterial cell entry gene of Mycobacterium Bovis BCG results in a mutant that exhibits a reduced invasiveness for epithelial cells. FEMS Microbiol Lett 177(2):237–242. https://doi.org/10.1016/s0378-1097(99)00301-8
Article CAS PubMed Google Scholar
Kumar A, Chandolia A, Chaudhry U, Brahmachari V, Bose M (2005) Comparison of mammalian cell entry operons of mycobacteria: in silico analysis and expression profiling. FEMS Immunol Med Microbiol 43(2):185–195. https://doi.org/10.1016/j.femsim.2004.08.013
Article CAS PubMed Google Scholar
Sarkar R, Lenders L, Wilkinson KA, Wilkinson RJ, Nicol MP (2012) Modern lineages of M. tuberculosis exhibit lineage-specific patterns of growth and cytokine induction in human monocyte-derived macrophages. PLoS One 7(8):e43170. https://doi.org/10.1371/journal.pone.0043170
Article CAS PubMed PubMed Central Google Scholar
Kent PT, Kubica GP (1985) Public Health Mycobacteriology: A Guide for the Level III Laboratory; Center for Diseases Control: Atlanta. 2
Vestal AL (1975) Procedures for the Isolation and Identification of Mycobacteria. US Department of Health Education and Welfare, Washington D C, pp 41–63
Shrivastava K, Garima K, Narang A, Bhattacharyya K, Vishnoi E, Singh RK (2017) Rv1458c: a new diagnostic marker for identification of M. tuberculosis complex in a novel duplex PCR assay. J Med Microbiol 66(3):371–376. https://doi.org/10.1099/jmm.0.000440
Article CAS PubMed Google Scholar
Hänscheid T, Ribeiro CM, Shapiro HM, Perlmutter NG (2007) Fluorescence microscopy for tuberculosis diagnosis. Lancet Infect Dis 7(4):236–237. https://doi.org/10.1016/S1473-3099(07)70058-0
Harley PJ (2004) INLaboratory Exercises in Microbiology; McGraw-Hill Higher Education: Aurora, illinois, USA
Narang A, Giri A, Gupta S, Garima K, Bose M, Varma-Basil M (2017) Contribution of putative efflux pump genes to isoniazid Resistance in clinical isolates of M. tuberculosis. Int J Mycobacteriol 6(2):177. https://doi.org/10.4103/ijmy.ijmy_26_17
Article CAS PubMed Google Scholar
Garima K, Pathak R, Tandon R, Rathor N, Sinha R, Bose M, Varma-Basil M (2015) differential expression of efflux pump genes of M. tuberculosis in response to varied subinhibitory concentrations of antituberculosis agents. Tuberculosis (Edinb) 95(2):155–161. https://doi.org/10.1016/j.tube.2015.01.005
Article CAS PubMed Google Scholar
Masiewicz P, Brzostek A, Wolański M, Dziadek J, Zakrzewska-Czerwińska J (2012) A novel role of the PrpR as a transcription factor involved in the regulation of methylcitrate pathway in M. tuberculosis. PLoS One. https://doi.org/10.1371/journal.pone.0043651
Article PubMed PubMed Central Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408
Article CAS PubMed Google Scholar
Bustin S, Huggett J (2017) qPCR primer design revisited. Biomol Detect Quantif 14:19–28. https://doi.org/10.1016/j.bdq.2017.11.001
Article CAS PubMed PubMed Central Google Scholar
Shen HB, Chou KC (2009) Gpos-MPLoc: a top-down approach to improve the quality of predicting subcellular localization of gram-positive bacterial proteins. Protein Pept Lett 16(12):1478–1484. https://doi.org/10.2174/092986609789839322
Article CAS PubMed Google Scholar
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J et al (2019) STRING V11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613. https://doi.org/10.1093/nar/gky1131
Article CAS PubMed Google Scholar
Kambayashi T, Laufer TM (2014) Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat Rev Immunol 14(11):719–730. https://doi.org/10.1038/nri3754
Article CAS PubMed Google Scholar
Fleri W, Paul S, Dhanda SK, Mahajan S, Xu X, Peters B, Sette A (2017) The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Front Immunol 8:278. https://doi.org/10.3389/fimmu.2017.00278
Article CAS PubMed PubMed Central Google Scholar
Nielsen M, Lundegaard C, Lund O (2007) Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinform 8(1):238. https://doi.org/10.1186/1471-2105-8-238
Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8(1):4. https://doi.org/10.1186/1471-2105-8-4
Rapin N, Lund O, Bernaschi M, Castiglione F (2010) Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS One 5(4):e9862. https://doi.org/10.1371/journal.pone.0009862
留言 (0)