Construction and evaluation of glycoprotein-based nucleic acid vaccines for Marburg virus

Cuomo-Dannenburg G, McCain K, McCabe R, Unwin HJT, Doohan P, Nash RK et al (2024) Marburg virus disease outbreaks, mathematical models, and disease parameters: a systematic review. Lancet Infect Dis 24(5):e307–e17. https://doi.org/10.1016/s1473-3099(23)00515-7

Article  PubMed  Google Scholar 

Abir MH, Rahman T, Das A, Etu SN, Nafiz IH, Rakib A et al (2022) Pathogenicity and virulence of Marburg virus. Virulence 13(1):609–633. https://doi.org/10.1080/21505594.2022.2054760

Article  CAS  PubMed  PubMed Central  Google Scholar 

Srivastava S, Sharma D, Kumar S, Sharma A, Rijal R, Asija A et al (2023) Emergence of Marburg virus: a global perspective on fatal outbreaks and clinical challenges. Front Microbiol 14:1239079. https://doi.org/10.3389/fmicb.2023.1239079

Article  PubMed  PubMed Central  Google Scholar 

Ezie KN, Takoutsing BD, Modeste D, Ines MZ, Sybile TNL, Caleb NM et al (2024) Marburg Virus Outbreak in Equatorial Guinea: need for speed. Annals Global Health 90(1):5. https://doi.org/10.5334/aogh.4178

Article  Google Scholar 

Samarasekera U (2023) Marburg virus outbreak in Equatorial Guinea. Lancet Infect Dis 23(5):534. https://doi.org/10.1016/s1473-3099(23)00221-9

Article  PubMed  Google Scholar 

Ashique S, Chaudhary V, Pal S, Panwar J, Kumar M, Pramanik S et al (2023) Marburg Virus- A threat during SARS-CoV-2 era: a review. Infect Disord Drug Targ 23(5):e280223214111. https://doi.org/10.2174/1871526523666230228103845

Article  CAS  Google Scholar 

Travieso T, Li J, Mahesh S, Mello J, Blasi M (2022) The use of viral vectors in vaccine development. NPJ Vaccines 7(1):75. https://doi.org/10.1038/s41541-022-00503-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pagliari S, Dema B, Sanchez-Martinez A, Montalvo Zurbia-Flores G, Rollier CS (2023) DNA vaccines: history, Molecular mechanisms and Future perspectives. J Mol Biol 435(23):168297. https://doi.org/10.1016/j.jmb.2023.168297

Article  CAS  PubMed  Google Scholar 

Biggs AT, Littlejohn LF (2023) Describing mRNA Vaccine Technology for a military audience. Mil Med 188(3–4):547–554. https://doi.org/10.1093/milmed/usac129

Article  PubMed  Google Scholar 

Parr CJC, Wada S, Kotake K, Kameda S, Matsuura S, Sakashita S et al (2020) N 1-Methylpseudouridine substitution enhances the performance of synthetic mRNA switches in cells. Nucleic Acids Res 48(6):e35. https://doi.org/10.1093/nar/gkaa070

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zong Y, Lin Y, Wei T, Cheng Q (2023) Lipid nanoparticle (LNP) enables mRNA delivery for Cancer Therapy. Adv Mater (Deerfield Beach Fla) 35(51):e2303261. https://doi.org/10.1002/adma.202303261

Article  CAS  Google Scholar 

Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten G, Jiskoot W et al (2021) mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int J Pharm 601:120586. https://doi.org/10.1016/j.ijpharm.2021.120586

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muramatsu H, Lam K, Bajusz C, Laczkó D, Karikó K, Schreiner P et al (2022) Lyophilization provides long-term stability for a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine. Mol Therapy: J Am Soc Gene Therapy 30(5):1941–1951. https://doi.org/10.1016/j.ymthe.2022.02.001

Article  CAS  Google Scholar 

Mittler E, Kolesnikova L, Hartlieb B, Davey R, Becker S (2011) The cytoplasmic domain of Marburg virus GP modulates early steps of viral infection. J Virol 85(16):8188–8196. https://doi.org/10.1128/jvi.00453-11

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hashiguchi T, Fusco ML, Bornholdt ZA, Lee JE, Flyak AI, Matsuoka R et al (2015) Structural basis for Marburg virus neutralization by a cross-reactive human antibody. Cell 160(5):904–912. https://doi.org/10.1016/j.cell.2015.01.041

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Sun B, Pan J, Feng Y, Ye W, Xu J et al (2021) Construction and evaluation of DNA vaccine encoding Ebola virus glycoprotein fused with lysosome-associated membrane protein. Antiviral Res 193:105141. https://doi.org/10.1016/j.antiviral.2021.105141

Article  CAS  PubMed  Google Scholar 

Zhang J, Sun B, Shen W, Wang Z, Liu Y, Sun Y et al (2023) In Silico Analyses, Experimental Verification and Application in DNA vaccines of Ebolavirus GP-Derived pan-MHC-II-Restricted epitopes. Vaccines 11(10). https://doi.org/10.3390/vaccines11101620

Liu Y, Sun B, Wang J, Sun H, Lu Z, Chen L et al (2022) In silico analyses and experimental validation of the MHC class-I restricted epitopes of Ebolavirus GP. Int Immunol 34(6):313–325. https://doi.org/10.1093/intimm/dxac006

Article  CAS  PubMed  Google Scholar 

Araf Y, Maliha ST, Zhai J, Zheng C (2023) Marburg virus outbreak in 2022: a public health concern. Lancet Microbe 4(1):e9. https://doi.org/10.1016/s2666-5247(22)00258-0

Article  PubMed  Google Scholar 

Sinnott JT, Kim K, Somboonwit C, Cosnett C, Segal D, Shapshak P (2023) Emergent Risk Group-4 (RG-4) filoviruses: a paradox in progress. Bioinformation 19(8):829–832. https://doi.org/10.6026/97320630019829

Article  PubMed  PubMed Central  Google Scholar 

Ahmed I, Salsabil L, Hossain MJ, Shahriar M, Bhuiyan MA, Islam MR (2023) The recent outbreaks of Marburg virus disease in African countries are indicating potential threat to the global public health: future prediction from historical data. Health Sci Rep 6(7):e1395. https://doi.org/10.1002/hsr2.1395

Article  PubMed  PubMed Central  Google Scholar 

Ignat’ev GM, Strel’tsova MA, Agafonov AP, Zhukova NA, Kashentseva EA (1994) Vorob’Eva MS. [The immunity indices of animals immunized with the inactivated Marburg virus after infection with homologous virus]. Vopr Virusol 39(1):13–17

PubMed  Google Scholar 

Riemenschneider J, Garrison A, Geisbert J, Jahrling P, Hevey M, Negley D et al (2003) Comparison of individual and combination DNA vaccines for B. Anthracis, Ebola virus, Marburg virus and Venezuelan equine encephalitis virus. Vaccine 21(25–26):4071–4080. https://doi.org/10.1016/s0264-410x(03)00362-1

Article  CAS  PubMed  Google Scholar 

Geisbert TW, Bailey M, Geisbert JB, Asiedu C, Roederer M, Grazia-Pau M et al (2010) Vector choice determines immunogenicity and potency of genetic vaccines against Angola Marburg virus in nonhuman primates. J Virol 84(19):10386–10394. https://doi.org/10.1128/jvi.00594-10

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mire CE, Geisbert JB, Agans KN, Satterfield BA, Versteeg KM, Fritz EA et al (2014) Durability of a vesicular stomatitis virus-based marburg virus vaccine in nonhuman primates. PLoS ONE 9(4):e94355. https://doi.org/10.1371/journal.pone.0094355

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gai W, Zheng X, Wang C, Wang H, Zhao Y, Wang Q et al (2017) Marburg virus-like particles by co-expression of glycoprotein and matrix protein in insect cells induces immune responses in mice. Virol J 14(1):204. https://doi.org/10.1186/s12985-017-0869-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamer MJ, Houser KV, Hofstetter AR, Ortega-Villa AM, Lee C, Preston A et al (2023) Safety, tolerability, and immunogenicity of the chimpanzee adenovirus type 3-vectored Marburg virus (cAd3-Marburg) vaccine in healthy adults in the USA: a first-in-human, phase 1, open-label, dose-escalation trial. Lancet (London England) 401(10373):294–302. https://doi.org/10.1016/s0140-6736(22)02400-x

Article  CAS  PubMed  Google Scholar 

Liu MA (2019) A comparison of plasmid DNA and mRNA as Vaccine technologies. Vaccines 7(2). https://doi.org/10.3390/vaccines7020037

Khobragade A, Bhate S, Ramaiah V, Deshpande S, Giri K, Phophle H et al (2022) Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): the interim efficacy results of a phase 3, randomised, double-blind, placebo-controlled study in India. Lancet (London England) 399(10332):1313–1321. https://doi.org/10.1016/s0140-6736(22)00151-9

Article  CAS  PubMed 

留言 (0)

沒有登入
gif