Cellular immunity to nucleoproteins (NP) of Crimean-Congo hemorrhagic fever virus (CCHFV) and Hazara Virus (HAZV)

Chumakov M, L’vov D, Gagarina A, Vil’ner L, Rodin I, Zaklinskaia V, Gol’dfarb L, Khanina M (1965) Studies on factors influencing the effectiveness of immunization against tick-borne encephalitis. I. Effect of immunogenic properties of vaccines on the effectiveness of vaccination and revaccination. Vopr Virusol 10(2):168–172

PubMed  CAS  Google Scholar 

Hoogstraal H (1979) The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol 15(4):307–417

Article  PubMed  CAS  Google Scholar 

Casals J (1969) Antigenic similarity between the virus causing Crimean hemorrhagic fever and Congo virus. Proc Soc Exp Biol Med 131(1):233–236

Ergonul O (2012) Crimean–Congo hemorrhagic fever virus: new outbreaks, new discoveries. Curr Opin Virol 2(2):215–220

Article  PubMed  Google Scholar 

Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M (2013) Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res 100(1):159–189

Article  PubMed  CAS  Google Scholar 

Chumakov M A new tick-borne virus disease—Crimean hemorrhagic fever. Crimean hemorrhagic fever (acute infectious capillary toxicosis) Simferopol, Moscow: Izd Otd Primorskoi Armii 1945:13–45

Butenko A, Chumakov M, Rubin V, Stolbov D (1968) Isolation and investigation of Astrakhan strain (‘Drozdov’) of Crimean hemorrhagic fever virus and data on serodiagnosis of this infection. In.: NAVAL MEDICAL RESEARCH UNIT NO 3 FPO NEW YORK 09527

Hoogstraal H (1966) Ticks in relation to human diseases caused by viruses. Ann Rev Entomol 11(1):261–308

Article  CAS  Google Scholar 

Begum F, Wissesman C (1970) Hazara (HAZ) strain. JC 280. Am J Trop Med Hyg 19:1095–1096

Article  Google Scholar 

Buckley SM (1974) Cross plaque neutralization tests with cloned crimean hemorrhagic fever-congo (CHF-C) and Hazara viruses. Proc Soc Exp Biol Med 146(2):594–600

Barnwal B, Karlberg H, Mirazimi A, Tan Y-J (2016) The non-structural protein of Crimean-Congo hemorrhagic fever virus disrupts the mitochondrial membrane potential and induces apoptosis. J Biol Chem 291(2):582–592

Article  PubMed  CAS  Google Scholar 

Surtees R, Ariza A, Punch EK, Trinh CH, Dowall SD, Hewson R, Hiscox JA, Barr JN, Edwards TA (2015) The crystal structure of the Hazara virus nucleocapsid protein. BMC Struct Biol 15(1):1–13

Article  Google Scholar 

Deyde VM, Khristova ML, Rollin PE, Ksiazek TG, Nichol ST (2006) Crimean-Congo hemorrhagic fever virus genomics and global diversity. J Virol 80(17):8834–8842

Article  PubMed  PubMed Central  CAS  Google Scholar 

Casals J, Tignor GH (1980) The Nairovirus genus: serological relationships. Intervirology 14(3–4):144–147

Article  PubMed  CAS  Google Scholar 

Smirnova SE (1979) A comparative study of the Crimean hemorrhagic fever-Congo group of viruses. Arch Virol 62(2):137–143

Article  PubMed  CAS  Google Scholar 

Hartlaub J, von Arnim F, Fast C, Somova M, Mirazimi A, Groschup MH, Keller M (2020) Sheep and cattle are not susceptible to experimental inoculation with Hazara Orthonairovirus, a Tick-Borne Arbovirus closely related to CCHFV. Microorganisms 8(12):1927

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cong Y, Ulasli M, Schepers H, Mauthe M, V’kovski P, Kriegenburg F, Thiel V, Haan CAMd, Reggiori F (2020) Nucleocapsid Protein Recruitment to replication-transcription complexes plays a crucial role in Coronaviral Life Cycle. J Virol 94(4). https://doi.org/10.1128/jvi.01925–01919

Marriott AC, Nuttall PA (1992) Comparison of the S RNA segments and nucleoprotein sequences of Crimean-Congo hemorrhagic fever, Hazara, and Dugbe viruses. Virology 189(2):795–799

Kalkan-Yazıcı M, Karaaslan E, Çetin NS, Hasanoğlu S, Güney F, Zeybek Ü, Doymaz MZ (2021) Cross-reactive anti-nucleocapsid protein immunity against Crimean-Congo Hemorrhagic Fever Virus and Hazara Virus in multiple species. J Virol 95(7):e02156–e02120

Article  PubMed  PubMed Central  Google Scholar 

Burt F, Samudzi R, Randall C, Pieters D, Vermeulen J, Knox C (2013) Human defined antigenic region on the nucleoprotein of Crimean-Congo hemorrhagic fever virus identified using truncated proteins and a bioinformatics approach. J Virol Methods 193(2):706–712

Article  PubMed  CAS  Google Scholar 

Wei P-f, Luo Y-j, Li T-x, Wang H-l, Hu Z-h, Zhang F-c, Zhang Y-j, Deng F (2010) Sun S-r: serial expression of the truncated fragments of the nucleocapsid protein of CCHFV and identification of the epitope region. Virol Sin 25(1):45–51

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ghiasi SM, Salmanian AH, Chinikar S, Zakeri S (2011) Mice orally immunized with a transgenic plant expressing the glycoprotein of Crimean-Congo hemorrhagic fever virus. Clin Vaccine Immunol 18(12):2031–2037

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zivcec M, Safronetz D, Scott DP, Robertson S, Feldmann H (2018) Nucleocapsid protein-based vaccine provides protection in mice against lethal Crimean-Congo hemorrhagic fever virus challenge. PLoS Negl Trop Dis 12(7):e0006628

Article  PubMed  PubMed Central  Google Scholar 

Hinkula J, Devignot S, Åkerström S, Karlberg H, Wattrang E, Bereczky S, Mousavi-Jazi M, Risinger C, Lindegren G, Vernersson C et al (2017) Immunization with DNA plasmids coding for Crimean-Congo Hemorrhagic Fever Virus Capsid and Envelope proteins and/or Virus-Like Particles Induces Protection and Survival in Challenged mice. J Virol 91(10). https://doi.org/10.1128/jvi.02076–02016

Kortekaas J, Vloet RP, McAuley AJ, Shen X, Bosch BJ, de Vries L, Moormann RJ, Bente DA (2015) Crimean-Congo Hemorrhagic Fever Virus Subunit vaccines induce high levels of neutralizing antibodies but no protection in STAT1 knockout mice. Vector Borne Zoonotic Dis 15(12):759–764

Aligholipour Farzani T, Földes K, Ergünay K, Gurdal H, Bastug A, Ozkul A (2019) Immunological analysis of a CCHFV mRNA vaccine candidate in mouse models. Vaccines 7(3):115

Goedhals D, Bester P, Paweska JT, Swanepoel R, Burt F (2014) Next-generation sequencing of southern African Crimean-Congo haemorrhagic fever virus isolates reveals a high frequency of M segment reassortment. Epidemiol Infect 142(9):1952–1962

Article  PubMed  CAS  Google Scholar 

Özdarendeli A, Çanakoğlu N, Berber E, Aydın K, Tonbak Ş, Ertek M, Buzgan T, Bolat Y, Aktaş M, Kalkan A (2010) The complete genome analysis of Crimean-Congo hemorrhagic fever virus isolated in Turkey. Virus Res 147(2):288–293

Article  PubMed  Google Scholar 

Goedhals D, Paweska JT, Burt FJ (2017) Long-lived CD8 + T cell responses following Crimean-Congo haemorrhagic fever virus infection. PLoS Negl Trop Dis 11(12):e0006149

Article  PubMed  PubMed Central  Google Scholar 

Venet F, Gossez M, Bidar F, Bodinier M, Coudereau R, Lukaszewicz A-C, Tardiveau C, Brengel-Pesce K, Cheynet V, Cazalis M-A et al (2022) T cell response against SARS-CoV-2 persists after one year in patients surviving severe COVID-19. eBioMedicine 78

Tan AT, Linster M, Tan CW, Le Bert N, Chia WN, Kunasegaran K, Zhuang Y, Tham CY, Chia A, Smith GJ (2021) Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep 34(6)

Rak A, Isakova-Sivak I, Rudenko L (2023) Nucleoprotein as a Promising Antigen for broadly protective influenza vaccines. Vaccines 11(12):1747

Article  PubMed  PubMed Central  CAS  Google Scholar 

Šantak M, Matić Z (2022) The role of Nucleoprotein in immunity to human negative-stranded RNA viruses—not just another Brick in the viral nucleocapsid. Viruses 14(3):521

Article  PubMed  PubMed Central  Google Scholar 

Ly H (2024) Progress toward the development of Lassa vaccines. Expert Rev Vaccines 23(1):5–7

Article  PubMed  CAS  Google Scholar 

Pintado Silva J, Fernandez-Sesma A (2023) Challenges on the development of a dengue vaccine: a comprehensive review of the state of the art. J Gen Virol 104(3)

Malik S, Kishore S, Nag S, Dhasmana A, Preetam S, Mitra O, León-Figueroa DA, Mohanty A, Chattu VK, Assefi M et al (2023) Ebola Virus Disease Vaccines: Development, Current Perspectives & Challenges. Vaccines 11(2):268

Perdomo-Celis F, Salvato MS, Medina-Moreno S, Zapata JC (2019) T-Cell response to viral hemorrhagic fevers. Vaccines 7(1)

Organization WH (2020) Crimean-Congo Haemorrhagic Fever. WHO, Geneva, Switzerland

Google Scholar 

Karaaslan E, Çetin NS, Kalkan-Yazıcı M, Hasanoğlu S, Karakeçili F, Özdarendeli A, Kalkan A, Kılıç AO, Doymaz MZ (2021) Immune responses in multiple hosts to nucleocapsid protein (NP) of Crimean-Congo Hemorrhagic Fever Virus (CCHFV). PLoS Negl Trop Dis 15(12):e0009973

Article  PubMed  PubMed Central  CAS  Google Scholar 

Maher IE, Griffith JE, Lau Q, Reeves T, Higgins DP (2014) Expression profiles of the immune genes CD4, CD8β, IFNγ, IL-4, IL-6 and IL-10 in mitogen-stimulated koala lymphocytes (Phascolarctos cinereus) by qRT-PCR. PeerJ 2:e280

Article  PubMed  PubMed Central  Google Scholar 

Black CA (1999) Delayed type hypersensitivity: current theories with a historic perspective. Dermatol Online J 5(1)

Cher DJ, Mosmann T (1987) Two types of murine helper T cell clone. II. Delayed-type hypersensitivity is mediated by TH1 clones. J Immunol (Baltimore Md: 1950) 138(11):3688–3694

Article  CAS  Google Scholar 

Boshra H, Lorenzo G, Rodriguez F, Brun A (2011) A DNA vaccine encoding ubiquitinated Rift Valley fever virus nucleoprotein provides consistent immunity and protects IFNAR–/– mice upon lethal virus challenge. Vaccine 29(27):4469–4475

Article  PubMed  CAS 

留言 (0)

沒有登入
gif