Chumakov M, L’vov D, Gagarina A, Vil’ner L, Rodin I, Zaklinskaia V, Gol’dfarb L, Khanina M (1965) Studies on factors influencing the effectiveness of immunization against tick-borne encephalitis. I. Effect of immunogenic properties of vaccines on the effectiveness of vaccination and revaccination. Vopr Virusol 10(2):168–172
Hoogstraal H (1979) The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol 15(4):307–417
Article PubMed CAS Google Scholar
Casals J (1969) Antigenic similarity between the virus causing Crimean hemorrhagic fever and Congo virus. Proc Soc Exp Biol Med 131(1):233–236
Ergonul O (2012) Crimean–Congo hemorrhagic fever virus: new outbreaks, new discoveries. Curr Opin Virol 2(2):215–220
Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M (2013) Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res 100(1):159–189
Article PubMed CAS Google Scholar
Chumakov M A new tick-borne virus disease—Crimean hemorrhagic fever. Crimean hemorrhagic fever (acute infectious capillary toxicosis) Simferopol, Moscow: Izd Otd Primorskoi Armii 1945:13–45
Butenko A, Chumakov M, Rubin V, Stolbov D (1968) Isolation and investigation of Astrakhan strain (‘Drozdov’) of Crimean hemorrhagic fever virus and data on serodiagnosis of this infection. In.: NAVAL MEDICAL RESEARCH UNIT NO 3 FPO NEW YORK 09527
Hoogstraal H (1966) Ticks in relation to human diseases caused by viruses. Ann Rev Entomol 11(1):261–308
Begum F, Wissesman C (1970) Hazara (HAZ) strain. JC 280. Am J Trop Med Hyg 19:1095–1096
Buckley SM (1974) Cross plaque neutralization tests with cloned crimean hemorrhagic fever-congo (CHF-C) and Hazara viruses. Proc Soc Exp Biol Med 146(2):594–600
Barnwal B, Karlberg H, Mirazimi A, Tan Y-J (2016) The non-structural protein of Crimean-Congo hemorrhagic fever virus disrupts the mitochondrial membrane potential and induces apoptosis. J Biol Chem 291(2):582–592
Article PubMed CAS Google Scholar
Surtees R, Ariza A, Punch EK, Trinh CH, Dowall SD, Hewson R, Hiscox JA, Barr JN, Edwards TA (2015) The crystal structure of the Hazara virus nucleocapsid protein. BMC Struct Biol 15(1):1–13
Deyde VM, Khristova ML, Rollin PE, Ksiazek TG, Nichol ST (2006) Crimean-Congo hemorrhagic fever virus genomics and global diversity. J Virol 80(17):8834–8842
Article PubMed PubMed Central CAS Google Scholar
Casals J, Tignor GH (1980) The Nairovirus genus: serological relationships. Intervirology 14(3–4):144–147
Article PubMed CAS Google Scholar
Smirnova SE (1979) A comparative study of the Crimean hemorrhagic fever-Congo group of viruses. Arch Virol 62(2):137–143
Article PubMed CAS Google Scholar
Hartlaub J, von Arnim F, Fast C, Somova M, Mirazimi A, Groschup MH, Keller M (2020) Sheep and cattle are not susceptible to experimental inoculation with Hazara Orthonairovirus, a Tick-Borne Arbovirus closely related to CCHFV. Microorganisms 8(12):1927
Article PubMed PubMed Central CAS Google Scholar
Cong Y, Ulasli M, Schepers H, Mauthe M, V’kovski P, Kriegenburg F, Thiel V, Haan CAMd, Reggiori F (2020) Nucleocapsid Protein Recruitment to replication-transcription complexes plays a crucial role in Coronaviral Life Cycle. J Virol 94(4). https://doi.org/10.1128/jvi.01925–01919
Marriott AC, Nuttall PA (1992) Comparison of the S RNA segments and nucleoprotein sequences of Crimean-Congo hemorrhagic fever, Hazara, and Dugbe viruses. Virology 189(2):795–799
Kalkan-Yazıcı M, Karaaslan E, Çetin NS, Hasanoğlu S, Güney F, Zeybek Ü, Doymaz MZ (2021) Cross-reactive anti-nucleocapsid protein immunity against Crimean-Congo Hemorrhagic Fever Virus and Hazara Virus in multiple species. J Virol 95(7):e02156–e02120
Article PubMed PubMed Central Google Scholar
Burt F, Samudzi R, Randall C, Pieters D, Vermeulen J, Knox C (2013) Human defined antigenic region on the nucleoprotein of Crimean-Congo hemorrhagic fever virus identified using truncated proteins and a bioinformatics approach. J Virol Methods 193(2):706–712
Article PubMed CAS Google Scholar
Wei P-f, Luo Y-j, Li T-x, Wang H-l, Hu Z-h, Zhang F-c, Zhang Y-j, Deng F (2010) Sun S-r: serial expression of the truncated fragments of the nucleocapsid protein of CCHFV and identification of the epitope region. Virol Sin 25(1):45–51
Article PubMed PubMed Central CAS Google Scholar
Ghiasi SM, Salmanian AH, Chinikar S, Zakeri S (2011) Mice orally immunized with a transgenic plant expressing the glycoprotein of Crimean-Congo hemorrhagic fever virus. Clin Vaccine Immunol 18(12):2031–2037
Article PubMed PubMed Central CAS Google Scholar
Zivcec M, Safronetz D, Scott DP, Robertson S, Feldmann H (2018) Nucleocapsid protein-based vaccine provides protection in mice against lethal Crimean-Congo hemorrhagic fever virus challenge. PLoS Negl Trop Dis 12(7):e0006628
Article PubMed PubMed Central Google Scholar
Hinkula J, Devignot S, Åkerström S, Karlberg H, Wattrang E, Bereczky S, Mousavi-Jazi M, Risinger C, Lindegren G, Vernersson C et al (2017) Immunization with DNA plasmids coding for Crimean-Congo Hemorrhagic Fever Virus Capsid and Envelope proteins and/or Virus-Like Particles Induces Protection and Survival in Challenged mice. J Virol 91(10). https://doi.org/10.1128/jvi.02076–02016
Kortekaas J, Vloet RP, McAuley AJ, Shen X, Bosch BJ, de Vries L, Moormann RJ, Bente DA (2015) Crimean-Congo Hemorrhagic Fever Virus Subunit vaccines induce high levels of neutralizing antibodies but no protection in STAT1 knockout mice. Vector Borne Zoonotic Dis 15(12):759–764
Aligholipour Farzani T, Földes K, Ergünay K, Gurdal H, Bastug A, Ozkul A (2019) Immunological analysis of a CCHFV mRNA vaccine candidate in mouse models. Vaccines 7(3):115
Goedhals D, Bester P, Paweska JT, Swanepoel R, Burt F (2014) Next-generation sequencing of southern African Crimean-Congo haemorrhagic fever virus isolates reveals a high frequency of M segment reassortment. Epidemiol Infect 142(9):1952–1962
Article PubMed CAS Google Scholar
Özdarendeli A, Çanakoğlu N, Berber E, Aydın K, Tonbak Ş, Ertek M, Buzgan T, Bolat Y, Aktaş M, Kalkan A (2010) The complete genome analysis of Crimean-Congo hemorrhagic fever virus isolated in Turkey. Virus Res 147(2):288–293
Goedhals D, Paweska JT, Burt FJ (2017) Long-lived CD8 + T cell responses following Crimean-Congo haemorrhagic fever virus infection. PLoS Negl Trop Dis 11(12):e0006149
Article PubMed PubMed Central Google Scholar
Venet F, Gossez M, Bidar F, Bodinier M, Coudereau R, Lukaszewicz A-C, Tardiveau C, Brengel-Pesce K, Cheynet V, Cazalis M-A et al (2022) T cell response against SARS-CoV-2 persists after one year in patients surviving severe COVID-19. eBioMedicine 78
Tan AT, Linster M, Tan CW, Le Bert N, Chia WN, Kunasegaran K, Zhuang Y, Tham CY, Chia A, Smith GJ (2021) Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep 34(6)
Rak A, Isakova-Sivak I, Rudenko L (2023) Nucleoprotein as a Promising Antigen for broadly protective influenza vaccines. Vaccines 11(12):1747
Article PubMed PubMed Central CAS Google Scholar
Šantak M, Matić Z (2022) The role of Nucleoprotein in immunity to human negative-stranded RNA viruses—not just another Brick in the viral nucleocapsid. Viruses 14(3):521
Article PubMed PubMed Central Google Scholar
Ly H (2024) Progress toward the development of Lassa vaccines. Expert Rev Vaccines 23(1):5–7
Article PubMed CAS Google Scholar
Pintado Silva J, Fernandez-Sesma A (2023) Challenges on the development of a dengue vaccine: a comprehensive review of the state of the art. J Gen Virol 104(3)
Malik S, Kishore S, Nag S, Dhasmana A, Preetam S, Mitra O, León-Figueroa DA, Mohanty A, Chattu VK, Assefi M et al (2023) Ebola Virus Disease Vaccines: Development, Current Perspectives & Challenges. Vaccines 11(2):268
Perdomo-Celis F, Salvato MS, Medina-Moreno S, Zapata JC (2019) T-Cell response to viral hemorrhagic fevers. Vaccines 7(1)
Organization WH (2020) Crimean-Congo Haemorrhagic Fever. WHO, Geneva, Switzerland
Karaaslan E, Çetin NS, Kalkan-Yazıcı M, Hasanoğlu S, Karakeçili F, Özdarendeli A, Kalkan A, Kılıç AO, Doymaz MZ (2021) Immune responses in multiple hosts to nucleocapsid protein (NP) of Crimean-Congo Hemorrhagic Fever Virus (CCHFV). PLoS Negl Trop Dis 15(12):e0009973
Article PubMed PubMed Central CAS Google Scholar
Maher IE, Griffith JE, Lau Q, Reeves T, Higgins DP (2014) Expression profiles of the immune genes CD4, CD8β, IFNγ, IL-4, IL-6 and IL-10 in mitogen-stimulated koala lymphocytes (Phascolarctos cinereus) by qRT-PCR. PeerJ 2:e280
Article PubMed PubMed Central Google Scholar
Black CA (1999) Delayed type hypersensitivity: current theories with a historic perspective. Dermatol Online J 5(1)
Cher DJ, Mosmann T (1987) Two types of murine helper T cell clone. II. Delayed-type hypersensitivity is mediated by TH1 clones. J Immunol (Baltimore Md: 1950) 138(11):3688–3694
Boshra H, Lorenzo G, Rodriguez F, Brun A (2011) A DNA vaccine encoding ubiquitinated Rift Valley fever virus nucleoprotein provides consistent immunity and protects IFNAR–/– mice upon lethal virus challenge. Vaccine 29(27):4469–4475
留言 (0)