MPXV infection impairs IFN response but is partially sensitive to IFN-γ antiviral effect

Alakunle EF, Okeke MI (2022) Monkeypox virus: a neglected zoonotic pathogen spreads globally. Nat Rev Microbiol 20:1–2. https://doi.org/10.1038/s41579-022-00776-z

Article  Google Scholar 

Kumar N, Acharya A, Gendelman HE, Byrareddy SN (2022) The 2022 outbreak and the pathobiology of the monkeypox virus. J Autoimmun 131:102855. https://doi.org/10.1016/j.jaut.2022.102855

Article  PubMed  PubMed Central  Google Scholar 

Ejaz H, Junaid K, Younas S et al (2022) Emergence and dissemination of monkeypox, an intimidating global public health problem. J Infect Public Health 15:1156–1165. https://doi.org/10.1016/j.jiph.2022.09.008

Article  PubMed  PubMed Central  Google Scholar 

Lee AJ, Ashkar AA (2018) The dual nature of type I and type II interferons. Front Immunol 9. https://doi.org/10.3389/fimmu.2018.02061

Stetson DB, Medzhitov R (2006) Type I interferons in host defense. Immunity 25:373–381. https://doi.org/10.1016/j.immuni.2006.08.007

Article  PubMed  Google Scholar 

MQ G, Ho AWS, Tang Y et al (2012) NK cells regulate CD8 + T cell priming and dendritic cell migration during influenza a infection by IFN-γ and perforin-dependent mechanisms. J Immunol (Baltimore Md: 1950) 189:2099–2109. https://doi.org/10.4049/jimmunol.1103474

Article  Google Scholar 

Ishikawa H, Tanaka K, Kutsukake E et al (2010) IFN-γ production downstream of NKT cell activation in mice infected with influenza virus enhances the cytolytic activities of both NK cells and viral antigen-specific CD8 + T cells. Virology 407:325–332. https://doi.org/10.1016/j.virol.2010.08.030

Article  PubMed  Google Scholar 

Dong P, Ju X, Yan Y et al (2018) γδ T cells provide protective function in highly pathogenic avian H5N1 influenza A virus infection. Front Immunol 9. https://doi.org/10.3389/fimmu.2018.02812

Weizman O-E, Adams NM, Schuster IS et al (2017) ILC1 Confer early host protection at initial sites of viral infection. Cell 171:795–808e12. https://doi.org/10.1016/j.cell.2017.09.052

Article  PubMed  PubMed Central  Google Scholar 

Koutsakos M, Illing PT, Nguyen THO et al (2019) Human CD8 + T cell cross-reactivity across influenza A, B and C viruses. Nat Immunol 20:613–625. https://doi.org/10.1038/s41590-019-0320-6

Article  PubMed  Google Scholar 

Dhawan S, Heredia A, Wahl LM et al (1995) Interferon-gamma-induced downregulation of CD4 inhibits the entry of human immunodeficiency virus type-1 in primary monocytes. Pathobiol J ImmunoPathol Mol Cell Biol 63:93–99. https://doi.org/10.1159/000163939

Article  Google Scholar 

Wei X, Jia Z-S, Lian J-Q et al (2009) Inhibition of Hepatitis C Virus infection by Interferon-γ through Downregulating Claudin-1. J Interferon Cytokine Res 29:171–178. https://doi.org/10.1089/jir.2008.0040

Article  PubMed  Google Scholar 

Brass AL, Huang I-C, Benita Y et al (2009) The IFITM proteins Mediate Cellular Resistance to Influenza A H1N1 Virus, West Nile Virus, and Dengue Virus. Cell 139:1243–1254. https://doi.org/10.1016/j.cell.2009.12.017

Article  PubMed  PubMed Central  Google Scholar 

Fong CH-Y, Lu L, Chen L-L et al (2022) Interferon-gamma inhibits influenza a virus cellular attachment by reducing sialic acid cluster size. iScience 25:104037. https://doi.org/10.1016/j.isci.2022.104037

Article  PubMed  PubMed Central  Google Scholar 

Arndt WD, Cotsmire S, Trainor K et al (2015) Evasion of the Innate Immune Type I Interferon System by Monkeypox Virus. J Virol 89:10489–10499. https://doi.org/10.1128/JVI.00304-15

Article  PubMed  PubMed Central  Google Scholar 

Seet BT, Johnston JB, Brunetti CR et al (2003) Poxviruses and immune evasion. Annu Rev Immunol 21:377–423. https://doi.org/10.1146/annurev.immunol.21.120601.141049

Article  PubMed  Google Scholar 

Perdiguero B, Esteban M (2009) The Interferon System and Vaccinia Virus Evasion mechanisms. J Interferon Cytokine Res 29:581–598. https://doi.org/10.1089/jir.2009.0073

Article  PubMed  Google Scholar 

Alcamı́ A, Symons JA, Smith GL (2000) The Vaccinia Virus Soluble Alpha/Beta Interferon (IFN) receptor binds to the cell surface and protects cells from the Antiviral effects of IFN. J Virol 74:11230–11239. https://doi.org/10.1128/jvi.74.23.11230-11239.2000

Article  PubMed  PubMed Central  Google Scholar 

Alcamí A, Smith GL (1996) Soluble interferon-γ receptors encoded by poxviruses. Comp Immunol Microbiol Infect Dis 19:305–317. https://doi.org/10.1016/0147-9571(96)00013-6

Article  PubMed  Google Scholar 

Guerra S, Cáceres A, Knobeloch K-P et al (2008) Vaccinia Virus E3 protein prevents the antiviral action of ISG15. PLoS Pathog 4:e1000096. https://doi.org/10.1371/journal.ppat.1000096

Article  PubMed  PubMed Central  Google Scholar 

Born TL, Morrison LA, Esteban DJ et al (2000) A poxvirus protein that binds to and inactivates IL-18, and inhibits NK Cell response. J Immunol 164:3246–3254. https://doi.org/10.4049/jimmunol.164.6.3246

Article  PubMed  Google Scholar 

Talbot-Cooper C, Pantelejevs T, Shannon JP et al (2022) Poxviruses and paramyxoviruses use a conserved mechanism of STAT1 antagonism to inhibit interferon signaling. Cell Host Microbe 30:357–372e11. https://doi.org/10.1016/j.chom.2022.01.014

Article  PubMed  PubMed Central  Google Scholar 

Li H, Huang Q-Z, Zhang H et al (2023) The land-scape of immune response to monkeypox virus. eBioMedicine 87:104424. https://doi.org/10.1016/j.ebiom.2022.104424

Article  PubMed  Google Scholar 

Johnston SC, Lin KL, Connor JH et al (2012) In vitro inhibition of monkeypox virus production and spread by Interferon-β. Virol J 9:5. https://doi.org/10.1186/1743-422X-9-5

Article  PubMed  PubMed Central  Google Scholar 

Santinelli L, Statzu M, Pierangeli A et al (2019) Increased expression of IL-32 correlates with IFN-γ, Th1 and Tc1 in virologically suppressed HIV-1-infected patients. Cytokine 120:273–281. https://doi.org/10.1016/j.cyto.2019.01.012

Article  PubMed  Google Scholar 

Kochs G, García-SastreA M-SL (2007) Multiple anti-interferon actions of the Influenza A Virus NS1 protein. J Virol 81:7011–7021. https://doi.org/10.1128/jvi.02581-06

Article  PubMed  PubMed Central  Google Scholar 

Minh T, Yeh I, Wu C-C et al (2022) Comparison of Transcriptomic signatures between Monkeypox-infected monkey and human cell lines. J Immunol Res 2022:1–17. https://doi.org/10.1155/2022/3883822

Article  Google Scholar 

Alkhalil A, Hammamieh R, Hardick J et al (2010) Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions. Virol J 7. https://doi.org/10.1186/1743-422x-7-173

Scagnolari C, Trombetti S, Cicetti S et al (2008) Severe Acute Respiratory Syndrome Coronavirus elicits a weak Interferon Response compared to Traditional Interferon-Inducing viruses. Intervirology 51:217–223. https://doi.org/10.1159/000154258

Article  PubMed  Google Scholar 

Cacciotti G, Caputo B, Selvaggi C et al (2015) Variation in interferon sensitivity and induction between Usutu and West Nile (lineages 1 and 2) viruses. Virology 485:189–198. https://doi.org/10.1016/j.virol.2015.07.015

Article  PubMed  Google Scholar 

REED LJ, MUENCH H (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27:493–497. https://doi.org/10.1093/oxfordjournals.aje.a118408

Article  Google Scholar 

CDC (2023) PCR Test Procedures. In: Centers for Disease Control and Prevention. https://www.cdc.gov/poxvirus/mpox/collections/pages/pcr-test-procedures.html

Earl PL, Americo JL, Moss B (2012) Lethal Monkeypox Virus infection of CAST/EiJ mice is Associated with a deficient Gamma Interferon Response. J Virol 86:9105–9112. https://doi.org/10.1128/jvi.00162-12

Article  PubMed  PubMed Central  Google Scholar 

Mann BA, Huang JH, Li P et al (2008) Vaccinia Virus blocks Stat1-Dependent and Stat1-Independent gene expression Induced by Type I and type II interferons. J Interferon Cytokine Res 28:367–380. https://doi.org/10.1089/jir.2007.0113

Article  PubMed  PubMed Central  Goo

留言 (0)

沒有登入
gif