A high-efficiency model indicating the role of inhibition in the resilience of neuronal networks to damage resulting from traumatic injury

Abeles, M. (1994). Firing rates and weil-timed events in the cerebral cortex, pp. 121–140. Springer. https://doi.org/10.1007/978-1-4612-4320-5_3

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent networks of spiking neurons. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17236-y

Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R., & Warland, D. (1991). Reading a neural code. Science, 252(5014), 1854–1857. https://doi.org/10.1126/science.2063199

Article  CAS  PubMed  Google Scholar 

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., Diesmann, M., Morrison, A., Goodman, P. H., Harris, F. C., Zirpe, M., Natschläger, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., … & Destexhe, A. (2007). Simulation of networks of spiking neurons: A review of tools and strategies. Journal of Computational Neuroscience, 23(3), 349–398. https://doi.org/10.1007/s10827-007-0038-6

Article  PubMed  PubMed Central  Google Scholar 

Crodelle, J., & Maia, P. D. (2021). A computational model for pain processing in the dorsal horn following axonal damage to receptor fibers. Brain Sciences, 11(4), 505. https://doi.org/10.3390/brainsci11040505

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dayan, P., & Abbott, L. F. (2001). Theoretical Neuroscience : Computational and Mathematical Modeling of Neural Systems. Cambridge, Mass: MIT Press.

Google Scholar 

Debanne, D., Campanac, E., Bialowas, A., Carlier, E., & Alcaraz, G. (2011). Axon physiology. Physiological Reviews, 91(2), 555–602. https://doi.org/10.1152/physrev.00048.2009

Article  CAS  PubMed  Google Scholar 

Delahunt, C. B., Maia, P. D., & Kutz, J. N. (2021). Built to last: Functional and structural mechanisms in the moth olfactory network mitigate effects of neural injury. Brain Sciences, 11(4), 462. https://doi.org/10.3390/brainsci11040462

Article  PubMed  PubMed Central  Google Scholar 

Ermentrout, G. B., & Terman, D. H. (2010). Mathematical Foundations of Neuroscience. Springer New York, NY. https://doi.org/10.1007/978-0-387-87708-2

Fornberg, B., & Sloan, D. M. (1994). A review of pseudospectral methods for solving partial differential equations. Acta Numerica, 3, 203–267. https://doi.org/10.1017/s0962492900002440

Article  Google Scholar 

Gerstner, W., & Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge, U.K. New York. https://books.google.com/books?id=Rs4oc7HfxIUC

Hansel, D., Mato, G., Meunier, C., & Neltner, L. (1998). On numerical simulations of integrate-and-fire neural networks. Neural Computation, 10(2), 467–483. https://doi.org/10.1162/089976698300017845

Article  CAS  PubMed  Google Scholar 

Haslinger, R., Klinkner, K. L., & Shalizi, C. R. (2010). The computational structure of spike trains. Neural Computation, 22(1), 121–157. https://doi.org/10.1162/neco.2009.12-07-678

Article  PubMed  PubMed Central  Google Scholar 

Heeger, D., et al. (2000). Poisson model of spike generation. Handout, University of Standford, 5(76), 1–13.

Google Scholar 

Herculano-Houzel, S. (2009). The human brain in numbers: a linearly scaled-up primate brain. Frontiers in Human Neuroscience, 3. https://doi.org/10.3389/neuro.09.031.2009

Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–544. https://doi.org/10.1113/jphysiol.1952.sp004764

Article  CAS  PubMed  PubMed Central  Google Scholar 

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15(5), 1063–1070. https://doi.org/10.1109/tnn.2004.832719

Article  PubMed  Google Scholar 

Johnson, V. E., Stewart, W., & Smith, D. H. (2013). Axonal pathology in traumatic brain injury. Experimental Neurology, 246, 35–43. https://doi.org/10.1016/j.expneurol.2012.01.013

Article  CAS  PubMed  Google Scholar 

Kamaleddin, M. A. (2021). Degeneracy in the nervous system: from neuronal excitability to neural coding. BioEssays, 44(1), 2100148. https://doi.org/10.1002/bies.202100148

Article  Google Scholar 

Lestienne, R. (1996). Determination of the precision of spike timing in the visual cortex of anaesthetised cats. Biological Cybernetics, 74(1), 55–61. https://doi.org/10.1007/bf00199137

Article  CAS  PubMed  Google Scholar 

Lusch, B., Weholt, J., Maia, P. D., & Kutz, J. N. (2018). Modeling cognitive deficits following neurodegenerative diseases and traumatic brain injuries with deep convolutional neural networks. Brain and Cognition, 123, 154–164. https://doi.org/10.1016/j.bandc.2018.02.012

Article  PubMed  Google Scholar 

Maia, P. D., Hemphill, M. A., Zehnder, B., Zhang, C., Parker, K. K., & Kutz, J. N. (2015). Diagnostic tools for evaluating the impact of focal axonal swellings arising in neurodegenerative diseases and/or traumatic brain injury. Journal of Neuroscience Methods, 253, 233–243. https://doi.org/10.1016/j.jneumeth.2015.06.022

Article  PubMed  Google Scholar 

Maia, P. D., & Kutz, J. N. (2013). Identifying critical regions for spike propagation in axon segments. Journal of Computational Neuroscience, 36(2), 141–155. https://doi.org/10.1007/s10827-013-0459-3

Article  PubMed  Google Scholar 

Maia, P. D., & Kutz, J. N. (2014). Compromised axonal functionality after neurodegeneration, concussion and/or traumatic brain injury. Journal of Computational Neuroscience, 37(2), 317–332. https://doi.org/10.1007/s10827-014-0504-x

Article  PubMed  Google Scholar 

Maia, P. D., & Kutz, J. N. (2017). Reaction time impairments in decision-making networks as a diagnostic marker for traumatic brain injuries and neurological diseases. Journal of Computational Neuroscience, 42(3), 323–347. https://doi.org/10.1007/s10827-017-0643-y

Article  PubMed  Google Scholar 

Maia, P. D., Raj, A., & Kutz, J. N. (2019). Slow-gamma frequencies are optimally guarded against effects of neurodegenerative diseases and traumatic brain injuries. Journal of Computational Neuroscience, 47, 1–16.

Article  PubMed  Google Scholar 

Manor, Y., Koch, C., & Segev, I. (1991). Effect of geometrical irregularities on propagation delay in axonal trees. Biophysical Journal, 60(6), 1424–1437. https://doi.org/10.1016/s0006-3495(91)82179-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maxwell, W. L., Povlishock, J. T., & Graham, D. L. (1997). A mechanistic analysis of nondisruptive axonal injury: A review. Journal of Neurotrauma, 14(7), 419–440. https://doi.org/10.1089/neu.1997.14.419

Article  CAS  PubMed  Google Scholar 

Neuberger, E. J., Gupta, A., Subramanian, D., Korgaonkar, A. A., & Santhakumar, V. (2017). Converging early responses to brain injury pave the road to epileptogenesis. Journal of Neuroscience Research, 97(11), 1335–1344. https://doi.org/10.1002/jnr.24202

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ofer, N., & Shefi, O. (2016). Axonal geometry as a tool for modulating firing patterns. Applied Mathematical Modelling, 40(4), 3175–3184. https://doi.org/10.1016/j.apm.2015.10.017

Article  Google Scholar 

Ramón, F., Joyner, R. W., & Moore, J. W. (1975). Propagation of action potentials in inhomogeneous axon regions, pp. 85–100. Springer. https://doi.org/10.1007/978-1-4684-2637-3_8

Rudolph, M., & Destexhe, A. (2006). Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies. Neural Computation, 18(9), 2146–2210. https://doi.org/10.1162/neco.2006.18.9.2146

Article  PubMed  Google Scholar 

Rudy, S., Maia, P. D., & Kutz, J. N. (2016). Cognitive and behavioral deficits arising from neurodegeneration and traumatic brain injury: a model for the underlying role of focal axonal swellings in neuronal networks with plasticity. Journal of Systems and Integrative Neuroscience, 2(2), 114–121. https://doi.org/10.15761/jsin.1000120

Sharp, D. J., Scott, G., & Leech, R. (2014). Network dysfunction after traumatic brain injury. Nature Reviews Neurology, 10(3), 156–166. https://doi.org/10.1038/nrneurol.2014.15

Article  PubMed  Google Scholar 

Stöber, T. M., Batulin, D., Triesch, J., Narayanan, R., & Jedlicka, P. (2023). Degeneracy in epilepsy: multiple routes to hyperexcitable brain circuits and their repair. Communications Biology, 6(1). https://doi.org/10.1038/s42003-023-04823-0

Sussillo, D., & Abbott, L. F. (2009). Generating coherent patterns of activity from chaotic neural networks. Neuron, 63(4), 544–557. https://doi.org/10.1016/j.neuron.2009.07.018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tagge, C. A., Fisher, A. M., Minaeva, O. V., Gaudreau-Balderrama, A., Moncaster, J. A., Zhang, X.-L., Wojnarowicz, M. W., Casey, N., Lu, H., Kokiko-Cochran, O. N., Saman, S., Ericsson, M., Onos, K. D., Veksler, R., Senatorov, V. V., Kondo, A., Zhou, X. Z., Miry, O., Vose, L. R., … & Goldstein, L. E. (2018). Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain, 141(2), 422–458. https://doi.org/10.1093/brain/awx350

Article  PubMed  PubMed Central  Google Scholar 

Tang-Schomer, M. D., Johnson, V. E., Baas, P. W., Stewart, W., & Smith, D. H. (2012). Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Experimental Neurology, 233(1), 364–372. https://doi.org/10.1016/j.expneurol.2011.10.030

Article  PubMed  Google Scholar 

Thapa, N., & Gudejko, M. (2014). Numerical solution of heat equation by spectral method. Applied Mathematical Sciences, 8, 397–404. https://doi.org/10.12988/ams.2014.39502

Vogels, T. P., & Abbott, L. (2007). Gating deficits in model networks: a path to schizophrenia? Pharmacopsychiatry, 40(S1), 73–77.

Article  Google Scholar 

Vogels, T. P. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25(46), 10786–10795. https://doi.org/10.1523/jneurosci.3508-05.2005

Article  CAS  PubMed  Google Scholar 

Vogels, T. P., Rajan, K., Abbott, L. F., et al. (2005). Neural network dynamics. Annual review of neuroscience, 28, 357.

Article  CAS 

留言 (0)

沒有登入
gif