Abeles, M. (1994). Firing rates and weil-timed events in the cerebral cortex, pp. 121–140. Springer. https://doi.org/10.1007/978-1-4612-4320-5_3
Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent networks of spiking neurons. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17236-y
Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R., & Warland, D. (1991). Reading a neural code. Science, 252(5014), 1854–1857. https://doi.org/10.1126/science.2063199
Article CAS PubMed Google Scholar
Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., Diesmann, M., Morrison, A., Goodman, P. H., Harris, F. C., Zirpe, M., Natschläger, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., … & Destexhe, A. (2007). Simulation of networks of spiking neurons: A review of tools and strategies. Journal of Computational Neuroscience, 23(3), 349–398. https://doi.org/10.1007/s10827-007-0038-6
Article PubMed PubMed Central Google Scholar
Crodelle, J., & Maia, P. D. (2021). A computational model for pain processing in the dorsal horn following axonal damage to receptor fibers. Brain Sciences, 11(4), 505. https://doi.org/10.3390/brainsci11040505
Article CAS PubMed PubMed Central Google Scholar
Dayan, P., & Abbott, L. F. (2001). Theoretical Neuroscience : Computational and Mathematical Modeling of Neural Systems. Cambridge, Mass: MIT Press.
Debanne, D., Campanac, E., Bialowas, A., Carlier, E., & Alcaraz, G. (2011). Axon physiology. Physiological Reviews, 91(2), 555–602. https://doi.org/10.1152/physrev.00048.2009
Article CAS PubMed Google Scholar
Delahunt, C. B., Maia, P. D., & Kutz, J. N. (2021). Built to last: Functional and structural mechanisms in the moth olfactory network mitigate effects of neural injury. Brain Sciences, 11(4), 462. https://doi.org/10.3390/brainsci11040462
Article PubMed PubMed Central Google Scholar
Ermentrout, G. B., & Terman, D. H. (2010). Mathematical Foundations of Neuroscience. Springer New York, NY. https://doi.org/10.1007/978-0-387-87708-2
Fornberg, B., & Sloan, D. M. (1994). A review of pseudospectral methods for solving partial differential equations. Acta Numerica, 3, 203–267. https://doi.org/10.1017/s0962492900002440
Gerstner, W., & Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge, U.K. New York. https://books.google.com/books?id=Rs4oc7HfxIUC
Hansel, D., Mato, G., Meunier, C., & Neltner, L. (1998). On numerical simulations of integrate-and-fire neural networks. Neural Computation, 10(2), 467–483. https://doi.org/10.1162/089976698300017845
Article CAS PubMed Google Scholar
Haslinger, R., Klinkner, K. L., & Shalizi, C. R. (2010). The computational structure of spike trains. Neural Computation, 22(1), 121–157. https://doi.org/10.1162/neco.2009.12-07-678
Article PubMed PubMed Central Google Scholar
Heeger, D., et al. (2000). Poisson model of spike generation. Handout, University of Standford, 5(76), 1–13.
Herculano-Houzel, S. (2009). The human brain in numbers: a linearly scaled-up primate brain. Frontiers in Human Neuroscience, 3. https://doi.org/10.3389/neuro.09.031.2009
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–544. https://doi.org/10.1113/jphysiol.1952.sp004764
Article CAS PubMed PubMed Central Google Scholar
Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15(5), 1063–1070. https://doi.org/10.1109/tnn.2004.832719
Johnson, V. E., Stewart, W., & Smith, D. H. (2013). Axonal pathology in traumatic brain injury. Experimental Neurology, 246, 35–43. https://doi.org/10.1016/j.expneurol.2012.01.013
Article CAS PubMed Google Scholar
Kamaleddin, M. A. (2021). Degeneracy in the nervous system: from neuronal excitability to neural coding. BioEssays, 44(1), 2100148. https://doi.org/10.1002/bies.202100148
Lestienne, R. (1996). Determination of the precision of spike timing in the visual cortex of anaesthetised cats. Biological Cybernetics, 74(1), 55–61. https://doi.org/10.1007/bf00199137
Article CAS PubMed Google Scholar
Lusch, B., Weholt, J., Maia, P. D., & Kutz, J. N. (2018). Modeling cognitive deficits following neurodegenerative diseases and traumatic brain injuries with deep convolutional neural networks. Brain and Cognition, 123, 154–164. https://doi.org/10.1016/j.bandc.2018.02.012
Maia, P. D., Hemphill, M. A., Zehnder, B., Zhang, C., Parker, K. K., & Kutz, J. N. (2015). Diagnostic tools for evaluating the impact of focal axonal swellings arising in neurodegenerative diseases and/or traumatic brain injury. Journal of Neuroscience Methods, 253, 233–243. https://doi.org/10.1016/j.jneumeth.2015.06.022
Maia, P. D., & Kutz, J. N. (2013). Identifying critical regions for spike propagation in axon segments. Journal of Computational Neuroscience, 36(2), 141–155. https://doi.org/10.1007/s10827-013-0459-3
Maia, P. D., & Kutz, J. N. (2014). Compromised axonal functionality after neurodegeneration, concussion and/or traumatic brain injury. Journal of Computational Neuroscience, 37(2), 317–332. https://doi.org/10.1007/s10827-014-0504-x
Maia, P. D., & Kutz, J. N. (2017). Reaction time impairments in decision-making networks as a diagnostic marker for traumatic brain injuries and neurological diseases. Journal of Computational Neuroscience, 42(3), 323–347. https://doi.org/10.1007/s10827-017-0643-y
Maia, P. D., Raj, A., & Kutz, J. N. (2019). Slow-gamma frequencies are optimally guarded against effects of neurodegenerative diseases and traumatic brain injuries. Journal of Computational Neuroscience, 47, 1–16.
Manor, Y., Koch, C., & Segev, I. (1991). Effect of geometrical irregularities on propagation delay in axonal trees. Biophysical Journal, 60(6), 1424–1437. https://doi.org/10.1016/s0006-3495(91)82179-8
Article CAS PubMed PubMed Central Google Scholar
Maxwell, W. L., Povlishock, J. T., & Graham, D. L. (1997). A mechanistic analysis of nondisruptive axonal injury: A review. Journal of Neurotrauma, 14(7), 419–440. https://doi.org/10.1089/neu.1997.14.419
Article CAS PubMed Google Scholar
Neuberger, E. J., Gupta, A., Subramanian, D., Korgaonkar, A. A., & Santhakumar, V. (2017). Converging early responses to brain injury pave the road to epileptogenesis. Journal of Neuroscience Research, 97(11), 1335–1344. https://doi.org/10.1002/jnr.24202
Article CAS PubMed PubMed Central Google Scholar
Ofer, N., & Shefi, O. (2016). Axonal geometry as a tool for modulating firing patterns. Applied Mathematical Modelling, 40(4), 3175–3184. https://doi.org/10.1016/j.apm.2015.10.017
Ramón, F., Joyner, R. W., & Moore, J. W. (1975). Propagation of action potentials in inhomogeneous axon regions, pp. 85–100. Springer. https://doi.org/10.1007/978-1-4684-2637-3_8
Rudolph, M., & Destexhe, A. (2006). Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies. Neural Computation, 18(9), 2146–2210. https://doi.org/10.1162/neco.2006.18.9.2146
Rudy, S., Maia, P. D., & Kutz, J. N. (2016). Cognitive and behavioral deficits arising from neurodegeneration and traumatic brain injury: a model for the underlying role of focal axonal swellings in neuronal networks with plasticity. Journal of Systems and Integrative Neuroscience, 2(2), 114–121. https://doi.org/10.15761/jsin.1000120
Sharp, D. J., Scott, G., & Leech, R. (2014). Network dysfunction after traumatic brain injury. Nature Reviews Neurology, 10(3), 156–166. https://doi.org/10.1038/nrneurol.2014.15
Stöber, T. M., Batulin, D., Triesch, J., Narayanan, R., & Jedlicka, P. (2023). Degeneracy in epilepsy: multiple routes to hyperexcitable brain circuits and their repair. Communications Biology, 6(1). https://doi.org/10.1038/s42003-023-04823-0
Sussillo, D., & Abbott, L. F. (2009). Generating coherent patterns of activity from chaotic neural networks. Neuron, 63(4), 544–557. https://doi.org/10.1016/j.neuron.2009.07.018
Article CAS PubMed PubMed Central Google Scholar
Tagge, C. A., Fisher, A. M., Minaeva, O. V., Gaudreau-Balderrama, A., Moncaster, J. A., Zhang, X.-L., Wojnarowicz, M. W., Casey, N., Lu, H., Kokiko-Cochran, O. N., Saman, S., Ericsson, M., Onos, K. D., Veksler, R., Senatorov, V. V., Kondo, A., Zhou, X. Z., Miry, O., Vose, L. R., … & Goldstein, L. E. (2018). Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain, 141(2), 422–458. https://doi.org/10.1093/brain/awx350
Article PubMed PubMed Central Google Scholar
Tang-Schomer, M. D., Johnson, V. E., Baas, P. W., Stewart, W., & Smith, D. H. (2012). Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Experimental Neurology, 233(1), 364–372. https://doi.org/10.1016/j.expneurol.2011.10.030
Thapa, N., & Gudejko, M. (2014). Numerical solution of heat equation by spectral method. Applied Mathematical Sciences, 8, 397–404. https://doi.org/10.12988/ams.2014.39502
Vogels, T. P., & Abbott, L. (2007). Gating deficits in model networks: a path to schizophrenia? Pharmacopsychiatry, 40(S1), 73–77.
Vogels, T. P. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. Journal of Neuroscience, 25(46), 10786–10795. https://doi.org/10.1523/jneurosci.3508-05.2005
Article CAS PubMed Google Scholar
Vogels, T. P., Rajan, K., Abbott, L. F., et al. (2005). Neural network dynamics. Annual review of neuroscience, 28, 357.
留言 (0)