Aberra, A. S., Wang, R., Grill, W. M., & Peterchev, A. V. (2023). Multi-scale model of axonal and dendritic polarization by transcranial direct current stimulation in realistic head geometry. Brain Stimulation, 16(6), 1776–1791.
Article PubMed PubMed Central Google Scholar
Aspart, F., Ladenbauer, J., & Obermayer, K. (2016). Extending integrate-and-fire model neurons to account for input filtering and the effects of weak electric fields mediated by the dendrite. PLOS Computational Biology, 12(11), e1005206.
Article PubMed PubMed Central Google Scholar
Au, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C., Jaeggi, S. M., & Jonides, J. (2016). Enhancing working memory training with transcranial direct current stimulation. Journal of Cognitive Neuroscience, 28(9), 1419–1432.
Bikson, M., Inoue, M., Akiyama, H., Deans, J. K., Fox, J. E., Miyakawa, H., & Jefferys, J. G. R. (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. Journal of Physiology-London, 557(1), 175–190.
Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S., & Magee, J. C. (2017). Behavioral time scale synaptic plasticity underlies CA1 place fields. Science, 357(6355), 1033–1036.
Article PubMed PubMed Central CAS Google Scholar
Chase, H. W., Boudewyn, M. A., Carter, C. S., & Phillips, M. L. (2020). Transcranial direct current stimulation: A roadmap for research, from mechanism of action to clinical implementation. Molecular Psychiatry, 25(2), 397–407.
DeFelipe, J., & Farinas, I. (1992). The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Progress in Neurobiology, 39(6), 563–607.
Article PubMed CAS Google Scholar
Dudai, A., Doron, M., Segev, I., & London, M. (2022). Synaptic input and ACh modulation regulate dendritic Ca2+ spike duration in pyramidal neurons, directly affecting their somatic output. Journal of Neuroscience, 42(7), 1184–1195.
Article PubMed CAS Google Scholar
Fröhlich, F., & McCormick, D. A. (2010). Endogenous electric fields may guide neocortical network activity. Neuron, 67(1), 129–143.
Article PubMed PubMed Central Google Scholar
Hay, E., Hill, S., Schuermann, F., Markram, H., & Segev, I. (2011). Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLOS Computational Biology, 7(7), e1002170.
Hines, M. L., & Carnevale, N. T. (1997). The neuron simulation environment. Neural Computation, 9(6), 1179–1209.
Article PubMed CAS Google Scholar
Horvath, J. C., Forte, J. D., & Carter, O. (2015a). Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: A systematic review. Neuropsychologia, 66, 213–236.
Horvath, J. C., Forte, J. D., & Carter, O. (2015b). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimulation, 8(3), 535–550.
Huang, X. L., Wei, X. L., Wang, J., & Yi, G. S. (2024). Frequency-dependent membrane polarization across neocortical cell types and subcellular elements by transcranial alternating current stimulation. Journal of Neural Engineering, 21(1), 016034.
Jackson, M. P., Rahman, A., Lafon, B., Kronberg, G., Ling, D., Parra, L. C., & Bikson, M. (2016). Animal models of transcranial direct current stimulation: Methods and mechanisms. Clinical Neurophysiology, 127(11), 3425–3454.
Article PubMed PubMed Central Google Scholar
Jonker, Z. D., Gaiser, C., Tulen, J. H. M., Ribbers, G. M., Frens, M. A., & Selles, R. W. (2021). No effect of anodal tDCS on motor cortical excitability and no evidence for responders in a large double-blind placebo-controlled trial. Brain Stimulation, 14(1), 100–109.
Kekic, M., Boysen, E., Campbell, I. C., & Schmidt, U. (2016). A systematic review of the clinical efficacy of transcranial direct current stimulation (tDCS) in psychiatric disorders. Journal of Psychiatric Research, 74, 70–86.
Lafon, B., Rahman, A., Bikson, M., & Parra, L. C. (2017). Direct current stimulation alters neuronal input/output function. Brain Stimulation, 10(1), 36–45.
Larkum, M. E., Zhu, J. J., & Sakmann, B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature, 398(6725), 338–341.
Article PubMed CAS Google Scholar
Larkum, M. E., Zhu, J. J., & Sakmann, B. (2001). Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. Journal of Physiology-London, 533(2), 447–466.
Larkum, M. E., Senn, W., & Lüscher, H. R. (2004). Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cerebral Cortex, 14(10), 1059–1070.
Leleo, E. G., & Segev, I. (2021). Burst control: Synaptic conditions for burst generation in cortical layer 5 pyramidal neurons. PLOS Computational Biology, 17(11), e1009558.
Article PubMed PubMed Central CAS Google Scholar
Naka, A., & Adesnik, H. (2016). Inhibitory circuits in cortical layer 5. Frontiers in Neural Circuits, 10, 35.
Article PubMed PubMed Central Google Scholar
Neymotin, S. A., Daniels, D. S., Caldwell, B., McDougal, R. A., Carnevale, N. T., Jas, M., Moore, C. I., Hines, M. L., Hamalainen, M., & Jones, S. R. (2020). Human Neocortical Neurosolver (HNN), a new software tool for interpreting the cellular and network origin of human MEG/EEG data. eLife, 9, e51214.
Article PubMed PubMed Central CAS Google Scholar
Philip, N. S., Nelson, B. G., Frohlich, F., Lim, K. O., Widge, A. S., & Carpenter, L. L. (2017). Low-intensity transcranial current stimulation in psychiatry. American Journal of Psychiatry, 174(7), 628–639.
Radman, T., Su, Y. Z., An, J. H., Parra, L. C., & Bikson, M. (2007). Spike timing amplifies the effect of electric fields on neurons: Implications for endogenous field effects. Journal of Neuroscience, 27(11), 3030–3036.
Article PubMed CAS Google Scholar
Radman, T., Ramos, R. L., Brumberg, J. C., & Bikson, M. (2009). Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimulation, 2(4), 215–228.
Article PubMed PubMed Central Google Scholar
Rahman, A., Reato, D., Arlotti, M., Gasca, F., Datta, A., Parra, L. C., & Bikson, M. (2013). Cellular effects of acute direct current stimulation: Somatic and synaptic terminal effects. Journal of Physiology-London, 591(10), 2563–2578.
Reato, D., Rahman, A., Bikson, M., & Parra, L. C. (2010). Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. Journal of Neuroscience, 30(45), 15067–15079.
Article PubMed CAS Google Scholar
Roy, A., Baxter, B., & He, B. (2014). High-definition transcranial direct current stimulation induces both acute and persistent changes in broadband cortical synchronization: A simultaneous tDCS-EEG study. IEEE Transactions on Biomedical Engineering, 61(7), 1967–1978.
Schaefer, A. T., Larkum, M. E., Sakmann, B., & Roth, A. (2003). Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. Journal of Neurophysiology, 89(6), 3143–3154.
Schiller, J., Schiller, Y., Stuart, G., & Sakmann, B. (1997). Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. Journal of Physiology-London, 505(3), 605–616.
留言 (0)