Effects of dendritic Ca2+ spike on the modulation of spike timing with transcranial direct current stimulation in cortical pyramidal neurons

Aberra, A. S., Wang, R., Grill, W. M., & Peterchev, A. V. (2023). Multi-scale model of axonal and dendritic polarization by transcranial direct current stimulation in realistic head geometry. Brain Stimulation, 16(6), 1776–1791.

Article  PubMed  PubMed Central  Google Scholar 

Aspart, F., Ladenbauer, J., & Obermayer, K. (2016). Extending integrate-and-fire model neurons to account for input filtering and the effects of weak electric fields mediated by the dendrite. PLOS Computational Biology, 12(11), e1005206.

Article  PubMed  PubMed Central  Google Scholar 

Au, J., Katz, B., Buschkuehl, M., Bunarjo, K., Senger, T., Zabel, C., Jaeggi, S. M., & Jonides, J. (2016). Enhancing working memory training with transcranial direct current stimulation. Journal of Cognitive Neuroscience, 28(9), 1419–1432.

Article  PubMed  Google Scholar 

Bikson, M., Inoue, M., Akiyama, H., Deans, J. K., Fox, J. E., Miyakawa, H., & Jefferys, J. G. R. (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. Journal of Physiology-London, 557(1), 175–190.

Article  CAS  Google Scholar 

Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S., & Magee, J. C. (2017). Behavioral time scale synaptic plasticity underlies CA1 place fields. Science, 357(6355), 1033–1036.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chase, H. W., Boudewyn, M. A., Carter, C. S., & Phillips, M. L. (2020). Transcranial direct current stimulation: A roadmap for research, from mechanism of action to clinical implementation. Molecular Psychiatry, 25(2), 397–407.

Article  PubMed  Google Scholar 

DeFelipe, J., & Farinas, I. (1992). The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Progress in Neurobiology, 39(6), 563–607.

Article  PubMed  CAS  Google Scholar 

Dudai, A., Doron, M., Segev, I., & London, M. (2022). Synaptic input and ACh modulation regulate dendritic Ca2+ spike duration in pyramidal neurons, directly affecting their somatic output. Journal of Neuroscience, 42(7), 1184–1195.

Article  PubMed  CAS  Google Scholar 

Fröhlich, F., & McCormick, D. A. (2010). Endogenous electric fields may guide neocortical network activity. Neuron, 67(1), 129–143.

Article  PubMed  PubMed Central  Google Scholar 

Hay, E., Hill, S., Schuermann, F., Markram, H., & Segev, I. (2011). Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLOS Computational Biology, 7(7), e1002170.

Article  Google Scholar 

Hines, M. L., & Carnevale, N. T. (1997). The neuron simulation environment. Neural Computation, 9(6), 1179–1209.

Article  PubMed  CAS  Google Scholar 

Horvath, J. C., Forte, J. D., & Carter, O. (2015a). Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: A systematic review. Neuropsychologia, 66, 213–236.

Article  PubMed  Google Scholar 

Horvath, J. C., Forte, J. D., & Carter, O. (2015b). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimulation, 8(3), 535–550.

Article  PubMed  Google Scholar 

Huang, X. L., Wei, X. L., Wang, J., & Yi, G. S. (2024). Frequency-dependent membrane polarization across neocortical cell types and subcellular elements by transcranial alternating current stimulation. Journal of Neural Engineering, 21(1), 016034.

Article  Google Scholar 

Jackson, M. P., Rahman, A., Lafon, B., Kronberg, G., Ling, D., Parra, L. C., & Bikson, M. (2016). Animal models of transcranial direct current stimulation: Methods and mechanisms. Clinical Neurophysiology, 127(11), 3425–3454.

Article  PubMed  PubMed Central  Google Scholar 

Jonker, Z. D., Gaiser, C., Tulen, J. H. M., Ribbers, G. M., Frens, M. A., & Selles, R. W. (2021). No effect of anodal tDCS on motor cortical excitability and no evidence for responders in a large double-blind placebo-controlled trial. Brain Stimulation, 14(1), 100–109.

Article  PubMed  Google Scholar 

Kekic, M., Boysen, E., Campbell, I. C., & Schmidt, U. (2016). A systematic review of the clinical efficacy of transcranial direct current stimulation (tDCS) in psychiatric disorders. Journal of Psychiatric Research, 74, 70–86.

Article  PubMed  Google Scholar 

Lafon, B., Rahman, A., Bikson, M., & Parra, L. C. (2017). Direct current stimulation alters neuronal input/output function. Brain Stimulation, 10(1), 36–45.

Article  PubMed  Google Scholar 

Larkum, M. E., Zhu, J. J., & Sakmann, B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature, 398(6725), 338–341.

Article  PubMed  CAS  Google Scholar 

Larkum, M. E., Zhu, J. J., & Sakmann, B. (2001). Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. Journal of Physiology-London, 533(2), 447–466.

Article  CAS  Google Scholar 

Larkum, M. E., Senn, W., & Lüscher, H. R. (2004). Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cerebral Cortex, 14(10), 1059–1070.

Article  PubMed  Google Scholar 

Leleo, E. G., & Segev, I. (2021). Burst control: Synaptic conditions for burst generation in cortical layer 5 pyramidal neurons. PLOS Computational Biology, 17(11), e1009558.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Naka, A., & Adesnik, H. (2016). Inhibitory circuits in cortical layer 5. Frontiers in Neural Circuits, 10, 35.

Article  PubMed  PubMed Central  Google Scholar 

Neymotin, S. A., Daniels, D. S., Caldwell, B., McDougal, R. A., Carnevale, N. T., Jas, M., Moore, C. I., Hines, M. L., Hamalainen, M., & Jones, S. R. (2020). Human Neocortical Neurosolver (HNN), a new software tool for interpreting the cellular and network origin of human MEG/EEG data. eLife, 9, e51214.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Philip, N. S., Nelson, B. G., Frohlich, F., Lim, K. O., Widge, A. S., & Carpenter, L. L. (2017). Low-intensity transcranial current stimulation in psychiatry. American Journal of Psychiatry, 174(7), 628–639.

Article  PubMed  Google Scholar 

Radman, T., Su, Y. Z., An, J. H., Parra, L. C., & Bikson, M. (2007). Spike timing amplifies the effect of electric fields on neurons: Implications for endogenous field effects. Journal of Neuroscience, 27(11), 3030–3036.

Article  PubMed  CAS  Google Scholar 

Radman, T., Ramos, R. L., Brumberg, J. C., & Bikson, M. (2009). Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimulation, 2(4), 215–228.

Article  PubMed  PubMed Central  Google Scholar 

Rahman, A., Reato, D., Arlotti, M., Gasca, F., Datta, A., Parra, L. C., & Bikson, M. (2013). Cellular effects of acute direct current stimulation: Somatic and synaptic terminal effects. Journal of Physiology-London, 591(10), 2563–2578.

Article  CAS  Google Scholar 

Reato, D., Rahman, A., Bikson, M., & Parra, L. C. (2010). Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. Journal of Neuroscience, 30(45), 15067–15079.

Article  PubMed  CAS  Google Scholar 

Roy, A., Baxter, B., & He, B. (2014). High-definition transcranial direct current stimulation induces both acute and persistent changes in broadband cortical synchronization: A simultaneous tDCS-EEG study. IEEE Transactions on Biomedical Engineering, 61(7), 1967–1978.

Article  PubMed  Google Scholar 

Schaefer, A. T., Larkum, M. E., Sakmann, B., & Roth, A. (2003). Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. Journal of Neurophysiology, 89(6), 3143–3154.

Article  PubMed  Google Scholar 

Schiller, J., Schiller, Y., Stuart, G., & Sakmann, B. (1997). Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. Journal of Physiology-London, 505(3), 605–616.

Article  CAS 

留言 (0)

沒有登入
gif