Modelling the effect of allopregnanolone on the resolution of spike-wave discharges

Andersson, J. D., Matuskey, D., & Finnema, S. J. (2019). Positron emission tomography imaging of the \(\gamma \)-aminobutyric acid system. Neuroscience Letters, 691, 35–43.

Article  CAS  PubMed  Google Scholar 

Bianchi, M. T., Song, L., Zhang, H., & Macdonald, R. L. (2002). Two different mechanisms of disinhibition produced by GABAa receptor mutations linked to epilepsy in humans. Journal of Neuroscience, 22(13), 5321–5327.

Article  CAS  PubMed  Google Scholar 

Brinton, R. D., Thompson, R. F., Foy, M. R., Baudry, M., Wang, J., Finch, C. E., & Nilsen, J. (2008). Progesterone receptors: form and function in brain. Frontiers in Neuroendocrinology, 29(2), 313–339.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bromfield, E. B., Cavazos, J. E., & Sirven, J. I. (2006). Basic mechanisms underlying seizures and epilepsy. An Introduction to Epilepsy [internet]. American Epilepsy Society.

Budziszewska, B., Van Luijtelaar, G., Coenen, A. M., Leśkiewicz, M., & Lasoń, W. (1999). Effects of neurosteroids on spike-wave discharges in the genetic epileptic WAG/Rij rat. Epilepsy Research, 33(1), 23–29.

Article  CAS  PubMed  Google Scholar 

Cain, S. M., Tyson, J. R., Choi, H.-B., Ko, R., Lin, P. J., LeDue, J. M., et al. (2018). Cav3.2 drives sustained burst-firing, which is critical for absence seizure propagation in reticular thalamic neurons. Epilepsia, 59(4), 778–791.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, Y., Parker, W. D., & Wang, K. (2014). The role of T-type calcium channel genes in absence seizures. Frontiers in Neurology, 5, 45.

Article  PubMed  PubMed Central  Google Scholar 

Chourasia, N., Ossó-Rivera, H., Ghosh, A., Von Allmen, G., & Koenig, M. K. (2019). Expanding the phenotypic spectrum of CACNA1H mutations. Pediatric Neurology, 93, 50–55.

Article  PubMed  Google Scholar 

Cope, D. W., Di Giovanni, G., Fyson, S. J., Orbán, G., Errington, A. C., Lőrincz, M. L., & Crunelli, V. (2009). Enhanced tonic GABAa inhibition in typical absence epilepsy. Nature Medicine, 15(12), 1392–1398.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crunelli, V., & Leresche, N. (2002). Childhood absence epilepsy: genes, channels, neurons and networks. Nature Reviews Neuroscience, 3(5), 371–382.

Article  CAS  PubMed  Google Scholar 

Currie, S. P., Luz, L. L., Booker, S. A., Wyllie, D. J., Kind, P. C., & Daw, M. I. (2017). Reduced local input to fast-spiking interneurons in the somatosensory cortex in the GABAa \(\gamma \)2 R43Q mouse model of absence epilepsy. Epilepsia, 58(4), 597–607.

Article  CAS  PubMed  PubMed Central  Google Scholar 

D’antuono, M., Inaba, Y., Biagini, G., D’arcangelo, G., Tancredi, V., & Avoli, M. (2006). Synaptic hyperexcitability of deep layer neocortical cells in a genetic model of absence seizures. Genes, Brain and Behavior, 5(1), 73–84.

Article  PubMed  Google Scholar 

Destexhe, A. (1998). Spike-and-wave oscillations based on the properties of GABAb receptors. Journal of Neuroscience, 18(21), 9099–9111.

Article  CAS  PubMed  Google Scholar 

Destexhe, A., Babloyantz, A., & Sejnowski, T. J. (1993). Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophysical Journal, 65(4), 1538–1552.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Destexhe, A., Bal, T., McCormick, D. A., & Sejnowski, T. J. (1996). Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. Journal of Neurophysiology, 76(3), 2049–2070.

Article  CAS  PubMed  Google Scholar 

Destexhe, A., Contreras, D., & Steriade, M. (1998). Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of Neurophysiology, 79(2), 999–1016.

Article  CAS  PubMed  Google Scholar 

Destexhe, A., Contreras, D., Steriade, M., Sejnowski, T. J., & Huguenard, J. R. (1996). In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. Journal of Neuroscience, 16(1), 169–185.

Article  CAS  PubMed  Google Scholar 

Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. Journal of Computational Neuroscience, 1(3), 195–230.

Article  CAS  PubMed  Google Scholar 

Destexhe, A., Mainen, Z. F., Sejnowski, T. J., et al. (1998). Kinetic models of synaptic transmission. Methods in Neuronal Modeling, 2, 1–25.

Google Scholar 

Diviccaro, S., Cioffi, L., Falvo, E., Giatti, S., & Melcangi, R. C. (2022). Allopregnanolone: An overview on its synthesis and effects. Journal of Neuroendocrinology, 34(2), e12996.

Article  CAS  PubMed  Google Scholar 

Dura-Bernal, S., Suter, B. A., Gleeson, P., Cantarelli, M., Quintana, A., Rodriguez, F., et al. (2019). NetPyNE, a tool for data-driven multiscale modeling of brain circuits. Elife, 8, e44494.

Article  PubMed  PubMed Central  Google Scholar 

Ermentrout, G. B., & Terman, D. H. (2010). Mathematical Foundations of Neuroscience. In (pp. 157–170). Springer New York.

Foldvary-Schaefer, N., & Falcone, T. (2003). Catamenial epilepsy: pathophysiology, diagnosis, and management. Neurology, 61(6 suppl 2), S2–S15.

CAS  PubMed  Google Scholar 

Frye, C. A., Koonce, C. J., & Walf, A. A. (2014). Novel receptor targets for production and action of allopregnanolone in the central nervous system: a focus on pregnane xenobiotic receptor. Frontiers in Cellular Neuroscience, 8, 106.

Article  PubMed  PubMed Central  Google Scholar 

Fu, X., Wang, Y.- J., Kang, J.- Q., & Mu, T.- W. (2022). GABAa receptor variants in epilepsy. Epilepsy [Internet].

Glauser, T. A., Holland, K., O’Brien, V. P., Keddache, M., Martin, L. J., Clark, P. O., & Grabowski, G. (2017). Pharmacogenetics of antiepileptic drug efficacy in childhood absence epilepsy. Annals of Neurology, 81(3), 444–453.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hertoft, P. (1963). The clinical, electroencephalographic and social prognosis in petit mai epilepsy. Epilepsia, 4(1–4), 298–314.

Article  CAS  PubMed  Google Scholar 

Hirsch, E., French, J., Scheffer, I. E., Bogacz, A., Alsaadi, T., Sperling, M. R., et al. (2022). ILAE definition of the idiopathic generalized epilepsy syndromes: position statement by the ILAE task force on nosology and definitions. Epilepsia, 63(6), 1475–1499.

Article  PubMed  Google Scholar 

Holt, A. B., & Netoff, T. I. (2013). Computational modeling of epilepsy for an experimental neurologist. Experimental Neurology, 244, 75–86.

Article  PubMed  Google Scholar 

Hughes, J. R. (2009). Absence seizures: a review of recent reports with new concepts. Epilepsy & Behavior, 15(4), 404–412.

Article  Google Scholar 

Huguenard, J. R., & McCormick, D. A. (1992). Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. Journal of Neurophysiology, 68(4), 1373–1383.

Article  CAS  PubMed  Google Scholar 

Kang, J., & Macdonald, R. L. (2004). The GABAa receptor \(\gamma \)2 subunit R43Q mutation linked to childhood absence epilepsy and febrile seizures causes retention of \(\alpha \)1\(\beta \)2\(\gamma \)2s receptors in the endoplasmic reticulum. Journal of Neuroscience, 24(40), 8672–8677.

Article  CAS  PubMed  Google Scholar 

Kim, H. R., Kim, G- H., Eun, S- H., Eun, B- L., & Byeon, J.H. (2016). Therapeutic outcomes and prognostic factors in childhood absence epilepsy. Journal of Clinical Neurology, 12(2), 160–165.

Knox, A. T., Glauser, T., Tenney, J., Lytton, W. W., & Holland, K. (2018). Modeling pathogenesis and treatment response in childhood absence epilepsy. Epilepsia, 59(1), 135–145.

Article  CAS  PubMed  Google Scholar 

Kole, M. H., Bräuer, A. U., & Stuart, G. J. (2007). Inherited cortical HCN1 channel loss amplifies dendritic calcium electrogenesis and burst firing in a rat absence epilepsy model. The Journal of Physiology, 578(2), 507–525.

留言 (0)

沒有登入
gif