Treatable Traits in Systemic Sclerosis

Denton CP, Khanna D (2017) Systemic sclerosis. Lancet 390:1685–1699

Article  PubMed  Google Scholar 

Bairkdar M, Rossides M, Westerlind H, Hesselstrand R, Arkema EV, Holmqvist M (2021) Incidence and prevalence of systemic sclerosis globally: a comprehensive systematic review and meta-analysis. Rheumatology 60:3121–3133

Article  PubMed  PubMed Central  Google Scholar 

Cavazzana I, Vojinovic T, Airo’ P, Fredi M, Ceribelli A, Pedretti E, Lazzaroni MG, Garrafa E, Franceschini F (2022) Systemic sclerosis-specific antibodies: novel and classical biomarkers. Clin Rev Allergy Immunol. https://doi.org/10.1007/s12016-022-08946-w

Article  PubMed  PubMed Central  Google Scholar 

Kowal-Bielecka O, Fransen J, Avouac J et al (2017) Update of EULAR recommendations for the treatment of systemic sclerosis. Ann Rheum Dis 76:1327–1339

Article  PubMed  Google Scholar 

Poddubnyy D (2021) Precision medicine in rheumatology: are we getting closer? Lancet 397:258–259

Article  PubMed  Google Scholar 

McDonald VM, Fingleton J, Agusti A et al (2019) Treatable traits: a new paradigm for 21st century management of chronic airway diseases: Treatable Traits Down Under International Workshop report. Eur Respir J 53:1802058

Article  PubMed  Google Scholar 

Amati F, Spagnolo P, Oldham JM et al (2023) Treatable traits in interstitial lung diseases: a call to action. Lancet Respir Med S2213–2600(23):00002–00004

Google Scholar 

Jameson JL, Longo DL (2015) Precision medicine–personalized, problematic, and promising. N Engl J Med 372:2229–2234

Article  CAS  PubMed  Google Scholar 

Agusti A, Bel E, Thomas M et al (2016) Treatable traits: toward precision medicine of chronic airway diseases. Eur Respir J 47:410–419

Article  PubMed  Google Scholar 

Guler SA, Winstone TA, Murphy D, Hague C, Soon J, Sulaiman N, Li KH, Dunne J, Wilcox PG, Ryerson CJ (2018) Does systemic sclerosis-associated interstitial lung disease burn out? Specific phenotypes of disease progression. Ann Am Thorac Soc 15:1427–1433

Article  PubMed  Google Scholar 

Woodruff PG, Agusti A, Roche N, Singh D, Martinez FJ (2015) Current concepts in targeting chronic obstructive pulmonary disease pharmacotherapy: making progress towards personalised management. Lancet 385:1789–1798

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vanfleteren LEGW, Kocks JWH, Stone IS et al (2014) Moving from the Oslerian paradigm to the post-genomic era: are asthma and COPD outdated terms? Thorax 69:72–79

Article  PubMed  Google Scholar 

Agusti A (2014) The path to personalised medicine in COPD. Thorax 69:857–864

Article  PubMed  Google Scholar 

McDonald VM, Clark VL, Cordova-Rivera L, Wark PAB, Baines KJ, Gibson PG (2020) Targeting treatable traits in severe asthma: a randomised controlled trial. Eur Respir J 55:1901509

Article  CAS  PubMed  Google Scholar 

Trusculescu AA, Manolescu D, Tudorache E, Oancea C (2020) Deep learning in interstitial lung disease-how long until daily practice. Eur Radiol 30:6285–6292

Article  PubMed  PubMed Central  Google Scholar 

Raghu G, Flaherty KR, Lederer DJ et al (2019) Use of a molecular classifier to identify usual interstitial pneumonia in conventional transbronchial lung biopsy samples: a prospective validation study. Lancet Respir Med 7:487–496

Article  PubMed  Google Scholar 

Darwin C (1857) Darwin project (University of Cambridge; ). https://www.darwinproject.ac.uk/letter/DCP-LETT-2130.xml#back-mark-Lfoot.f6.

Berg J (2018) Lumping and splitting. Science 359:1309

Article  CAS  PubMed  Google Scholar 

Kokosi MA, Margaritopoulos GA, Wells AU (2018) Personalised medicine in interstitial lung diseases: number 6 in the series “Personalised medicine in respiratory diseases” Edited by Renaud Louis and Nicolas Roche. Eur Respir Rev 27:170117

Article  PubMed  PubMed Central  Google Scholar 

Perelas A, Silver RM, Arrossi AV, Highland KB (2020) Systemic sclerosis-associated interstitial lung disease. Lancet Respir Med 8:304–320

Article  CAS  PubMed  Google Scholar 

Moxey J, Huq M, Proudman S et al (2019) Significance of anti-neutrophil cytoplasmic antibodies in systemic sclerosis. Arthritis Res Ther 21:57

Article  PubMed  PubMed Central  Google Scholar 

De Luca G, Bosello SL, Berardi G et al (2015) Tumour-associated antigens in systemic sclerosis patients with interstitial lung disease: association with lung involvement and cancer risk. Rheumatology (Oxford) 54:1991–1999

Article  PubMed  Google Scholar 

Elhai M, Hoffmann-Vold AM, Avouac J et al (2019) Performance of candidate serum biomarkers for systemic sclerosis-associated interstitial lung disease. Arthritis Rheumatol 71:972–982

Article  CAS  PubMed  Google Scholar 

Kim A, Kim Y, Kim G-T, Ahn E, So MW, Sohn DH, Lee S-G (2020) Platelet-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio as potential makers for digital ulcers and interstitial lung disease in patients with systemic sclerosis: cross-sectional analysis of data from a prospective cohort study. Rheumatol Int 40:1071–1079

Article  CAS  PubMed  Google Scholar 

Olewicz-Gawlik A, Danczak-Pazdrowska A, Kuznar-Kaminska B, Gornowicz-Porowska J, Katulska K, Trzybulska D, Batura-Gabryel H, Silny W, Poplawski D, Hrycaj P (2014) Interleukin-17 and interleukin-23: importance in the pathogenesis of lung impairment in patients with systemic sclerosis. Int J Rheum Dis 17:664–670

Article  CAS  PubMed  Google Scholar 

Truchetet M-E, Brembilla NC, Montanari E, Allanore Y, Chizzolini C (2011) Increased frequency of circulating Th22 in addition to Th17 and Th2 lymphocytes in systemic sclerosis: association with interstitial lung disease. Arthritis Res Ther 13:R166

Article  CAS  PubMed  PubMed Central  Google Scholar 

Versace AG, Bitto A, Ioppolo C et al (2022) IL-13 and IL-33 serum levels are increased in systemic sclerosis patients with interstitial lung disease. Front Med (Lausanne) 9:825567

Article  PubMed  Google Scholar 

Corrado A, Rotondo C, Sanpaolo ER, Altomare A, Maruotti N, Cici D, Cantatore FP (2022) 1,25OH-vitamin D3 and IL-17 inhibition modulate pro-fibrotic cytokines production in peripheral blood mononuclear cells of patients with systemic sclerosis. Int J Med Sci 19:867–877

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee CG, Herzog EL, Ahangari F et al (2012) Chitinase 1 is a biomarker for and therapeutic target in scleroderma-associated interstitial lung disease that augments TGF-β1 signaling. J Immunol 189:2635–2644

Article  CAS  PubMed  Google Scholar 

O’Reilly S (2021) Circulating gremlin-1 is elevated in systemic sclerosis patients. J Scleroderma Relat Disord 6:286–289

Article  PubMed  PubMed Central  Google Scholar 

Bosello S, Basile U, De Lorenzis E et al (2018) Free light chains of immunoglobulins in patients with systemic sclerosis: correlations with lung involvement and inflammatory milieu. J Clin Pathol 71:620–625

Article  CAS  PubMed  Google Scholar 

Muangchan C, Pope JE (2012) Interleukin 6 in systemic sclerosis and potential implications for targeted therapy. J Rheumatol 39:1120–1124

Article  CAS  Google Scholar 

Volkmann ER, Tashkin DP, Kuwana M et al (2019) Progression of interstitial lung disease in systemic sclerosis: the importance of pneumoproteins Krebs von den Lungen 6 and CCL18. Arthritis Rheumatol 71:2059–2067

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu M, Baron M, Pedroza C et al (2017) CCL2 in the circulation predicts long-term progression of interstitial lung disease in patients with early systemic sclerosis: data from two independent cohorts. Arthritis Rheumatol 69:1871–1878

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao X, Jia G, Guttman A et al (2020) Osteopontin links myeloid activation and disease progression in systemic sclerosis. Cell Rep Med 1:100140

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laustriat G, Ruyssen-Witrand A, Constantin A, Barnetche T, Adoue D, Cantagrel A, Degboé Y (2018) Anti-citrullinated peptides antibodies in systemic sclerosis: meta-analysis of frequency and meaning. Joint Bone Spine 85:147–153

Article  CAS  PubMed  Google Scholar 

Lande R, Mennella A, Palazzo R et al (2020) Anti-CXCL4 antibody reactivity is present in systemic sclerosis (SSc) and correlates with the SSc type I interferon signature. Int J Mol Sci 21:E5102

Article  Google Scholar 

Manetti M, Guiducci S, Romano E, Bellando-Randone S, Conforti ML, Ibba-Manneschi L, Matucci-Cerinic M (2012) Increased serum levels and tissue expression of matrix metalloproteinase-12 in patients with systemic sclerosis: correlation with severity of skin and pulmonary fibrosis and vascular damage. Ann Rheum Dis 71:1064–1072

Article  CAS  PubMed 

留言 (0)

沒有登入
gif