Uncovering the Cellular Microenvironment in Chronic Rhinosinusitis via Single-Cell RNA Sequencing: Application and Future Directions

Bachert C, Marple B, Schlosser RJ, Hopkins C, Schleimer RP, Lambrecht BN et al (2020) Adult chronic rhinosinusitis. Nat Rev Dis Primers 6(1):86

Article  PubMed  Google Scholar 

Cho SH, Hamilos DL, Han DH, Laidlaw TM (2020) Phenotypes of chronic rhinosinusitis. J Allergy Clin Immunol Pract 8(5):1505–1511

Article  PubMed  PubMed Central  Google Scholar 

Kato A, Peters AT, Stevens WW, Schleimer RP, Tan BK, Kern RC (2022) Endotypes of chronic rhinosinusitis: relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches. Allergy 77(3):812–826

Article  PubMed  Google Scholar 

Chapurin N, Wu J, Labby AB, Chandra RK, Chowdhury NI, Turner JH (2022) Current insight into treatment of chronic rhinosinusitis: phenotypes, endotypes, and implications for targeted therapeutics. J Allergy Clin Immunol 150(1):22–32

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F et al (2012) EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists Rhinology 50(1):1–12

PubMed  Google Scholar 

Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma S et al (2020) European position paper on rhinosinusitis and nasal polyps 2020. Rhinology 58(Suppl S29):1–464

PubMed  Google Scholar 

Zhu Z, Wang W, Zhang X, Wang X, Zha Y, Chen Y et al (2020) Nasal fluid cytology and cytokine profiles of eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Rhinology 58(4):314–322

CAS  PubMed  Google Scholar 

Wang W, Gao Y, Zhu Z, Zha Y, Wang X, Qi F et al (2019) Changes in the clinical and histological characteristics of Chinese chronic rhinosinusitis with nasal polyps over 11 years. Int Forum Allergy Rhinol 9(2):149–157

Article  CAS  PubMed  Google Scholar 

Wang W, Gao Z, Wang H, Li T, He W, Lv W et al (2016) Transcriptome analysis reveals distinct gene expression profiles in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyps. Sci Rep 6:26604

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M et al (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65(4):631-643.e4

Article  CAS  PubMed  Google Scholar 

Grün D, van Oudenaarden A (2015) Design and analysis of single-cell sequencing experiments. Cell 163(4):799–810

Article  PubMed  Google Scholar 

Papalexi E, Satija R (2018) Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol 18(1):35–45

Article  CAS  PubMed  Google Scholar 

Schleimer RP, Berdnikovs S (2017) Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. J Allergy Clin Immunol 139(6):1752–1761

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kato A, Schleimer RP, Bleier BS (2022) Mechanisms and pathogenesis of chronic rhinosinusitis. J Allergy Clin Immunol 149(5):1491–1503

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hammad H, Lambrecht BN (2015) Barrier epithelial cells and the control of type 2 immunity. Immunity 43(1):29–40

Article  CAS  PubMed  Google Scholar 

Akdis CA (2021) Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol 21(11):739–751

Article  CAS  PubMed  Google Scholar 

Ordovas-Montanes J, Dwyer DF, Nyquist SK, Buchheit KM, Vukovic M, Deb C et al (2018) Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560(7720):649–654

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang W, Xu Y, Wang L, Zhu Z, Aodeng S, Chen H et al (2022) Single-cell profiling identifies mechanisms of inflammatory heterogeneity in chronic rhinosinusitis. Nat Immunol 23(10):1484–1494

Article  CAS  PubMed  Google Scholar 

Wang Y, Li Z, Lu J (2024) Single-cell RNA sequencing reveals the epithelial cell, fibroblast, and key gene alterations in chronic rhinosinusitis with nasal polyps. Scientific Reports [Internet] [cited 2024 Mar 13];14. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10821928/

Hupin C, Gohy S, Bouzin C, Lecocq M, Polette M, Pilette C (2014) Features of mesenchymal transition in the airway epithelium from chronic rhinosinusitis. Allergy 69(11):1540–1549

Article  CAS  PubMed  Google Scholar 

Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y et al (2009) Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A 106(31):12771–12775

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruysseveldt E, Martens K, Steelant B (2021) Airway basal cells, protectors of epithelial walls in health and respiratory diseases. Front Allergy 2:787128

Article  PubMed  PubMed Central  Google Scholar 

Wang X, Hallen NR, Lee M, Samuchiwal S, Ye Q, Buchheit KM et al (2023) Type 2 inflammation drives an airway basal stem cell program through insulin receptor substrate signaling. J Allergy Clin Immunol 151(6):1536–1549

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rock JR, Gao X, Xue Y, Randell SH, Kong YY, Hogan BLM (2011) Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell 8(6):639–648

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hellings PW, Steelant B (2020) Epithelial barriers in allergy and asthma. J Allergy Clin Immunol 145(6):1499–1509

Article  PubMed  PubMed Central  Google Scholar 

Danahay H, Pessotti AD, Coote J, Montgomery BE, Xia D, Wilson A et al (2015) Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Rep 10(2):239–252

Article  CAS  PubMed  Google Scholar 

Böscke R, Vladar EK, Könnecke M, Hüsing B, Linke R, Pries R et al (2017) Wnt signaling in chronic rhinosinusitis with nasal polyps. Am J Respir Cell Mol Biol 56(5):575–584

Article  PubMed  PubMed Central  Google Scholar 

Sivaprasad U, Kinker KG, Ericksen MB, Lindsey M, Gibson AM, Bass SA et al (2015) SERPINB3/B4 contributes to early inflammation and barrier dysfunction in an experimental murine model of atopic dermatitis. J Invest Dermatol 135(1):160–169

Article  CAS  PubMed  Google Scholar 

Ma J, Rubin BK, Voynow JA (2018) Mucins, Mucus, and Goblet Cells. Chest 154(1):169–176

Article  PubMed  Google Scholar 

Kesimer M (2022) Mucins MUC5AC and MUC5B in the airways: MUCing around together. Am J Respir Crit Care Med 206(9):1055–1057

Article  PubMed  PubMed Central  Google Scholar 

Roy MG, Livraghi-Butrico A, Fletcher AA, McElwee MM, Evans SE, Boerner RM et al (2014) Muc5b is required for airway defence. Nature 505(7483):412–416

Article  CAS  PubMed  Google Scholar 

Okuda K, Chen G, Subramani DB, Wolf M, Gilmore RC, Kato T et al (2019) Localization of secretory mucins MUC5AC and MUC5B in normal/healthy human airways. Am J Respir Crit Care Med 199(6):715–727

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lachowicz-Scroggins ME, Yuan S, Kerr SC, Dunican EM, Yu M, Carrington SD et al (2016) Abnormalities in MUC5AC and MUC5B protein in airway mucus in asthma. Am J Respir Crit Care Med 194(10):1296–1299

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonser LR, Erle DJ (2017) Airway mucus and asthma: the role of MUC5AC and MUC5B. J Clin Med 6(12):112

Article  PubMed  PubMed Central  Google Scholar 

Cohen NA (2006) Sinonasal mucociliary clearance in health and disease. Ann Otol Rhinol Laryngol Suppl 196:20–26

Article  PubMed  Google Scholar 

O’Leary CE, Schneider C, Locksley RM (2019) Tuft cells-systemically dispersed sensory epithelia integrating immune and neural circuitry. Annu Rev Immunol 37:47–72

Article  PubMed  Google Scholar 

Kotas ME, Moore CM, Gurrola JG, Pletcher SD, Goldberg AN, Alvarez R et al (2022) IL-13-programmed airway tuft cells produce PGE2, which promotes CFTR-dependent mucociliary function. JCI Insight 7(13):e159832

Article  PubMed  PubMed Central  Google Scholar 

Plasschaert LW, Žilionis R, Choo-Wing R, Savova V, Knehr J, Roma G et al (2018) A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560(7718):377–381

留言 (0)

沒有登入
gif