Osteoporosis and Primary Biliary Cholangitis: A Trans-ethnic Mendelian Randomization Analysis

EASL Clinical Practice Guidelines (2017) the diagnosis and management of patients with primary biliary cholangitis. J Hepatol 67(1):145–172

Article  Google Scholar 

Hirschfield GM, Gershwin ME (2013) The immunobiology and pathophysiology of primary biliary cirrhosis. Annu Rev Pathol 8:303–330

Article  CAS  PubMed  Google Scholar 

Lleo A et al (2020) Primary biliary cholangitis. Lancet 396(10266):1915–1926

Article  CAS  PubMed  Google Scholar 

Trivedi PJ, Hirschfield GM (2021) Recent advances in clinical practice: epidemiology of autoimmune liver diseases. Gut 70(10):1989–2003

Article  PubMed  Google Scholar 

Zeng N et al (2019) Epidemiology and clinical course of primary biliary cholangitis in the Asia-Pacific region: a systematic review and meta-analysis. Hepatol Int 13(6):788–799

Article  PubMed  Google Scholar 

Parés A, Guañabens N (2018) Primary biliary cholangitis and bone disease. Best Pract Res Clin Gastroenterol 34–35:63–70

Article  PubMed  Google Scholar 

Chen JL et al (2023) Prevalence and risk factors of osteoporosis detected by dual-energy X-ray absorptiometry among Chinese patients with primary biliary cholangitis. World J Gastroenterol 29(29):4580–4592

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liao CY et al (2018) Increased risk of osteoporosis in patients with primary biliary cirrhosis. PLoS ONE 13(3):e0194418

Article  PubMed  PubMed Central  Google Scholar 

Schmidt T et al (2018) Disease duration and stage influence bone microstructure in patients with primary biliary cholangitis. J Bone Miner Res 33(6):1011–1019

Article  CAS  PubMed  Google Scholar 

Guañabens N et al (2005) Severity of cholestasis and advanced histological stage but not menopausal status are the major risk factors for osteoporosis in primary biliary cirrhosis. J Hepatol 42(4):573–577

Article  PubMed  Google Scholar 

Guañabens N et al (2010) Low bone mass and severity of cholestasis affect fracture risk in patients with primary biliary cirrhosis. Gastroenterology 138(7):2348–2356

Article  PubMed  Google Scholar 

Schönau J et al (2023) Risk of fractures and postfracture mortality in 3980 people with primary biliary cholangitis: a population-based cohort study. J Intern Med 294(2):164–177

Article  PubMed  Google Scholar 

Curry SJ et al (2018) Screening for osteoporosis to prevent fractures: US Preventive Services Task Force Recommendation Statement. JAMA 319(24):2521–2531

Article  PubMed  Google Scholar 

Pouresmaeili F et al (2018) A comprehensive overview on osteoporosis and its risk factors. Ther Clin Risk Manag 14:2029–2049

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cosman F et al (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25(10):2359–2381

Article  CAS  PubMed  PubMed Central  Google Scholar 

Danford CJ et al (2020) The Pharmacologic management of osteoporosis in primary biliary cholangitis: a systematic review and meta-analysis. J Clin Densitom 23(2):223–236

Article  PubMed  Google Scholar 

Boonstra K, Beuers U, Ponsioen CY (2012) Epidemiology of primary sclerosing cholangitis and primary biliary cirrhosis: a systematic review. J Hepatol 56(5):1181–1188

Article  PubMed  Google Scholar 

Estrada K et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44(5):491–501

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roshandel D et al (2010) Genetic variation in the RANKL/RANK/OPG signaling pathway is associated with bone turnover and bone mineral density in men. J Bone Miner Res 25(8):1830–1838

Article  CAS  PubMed  Google Scholar 

Juran BD et al (2012) Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. Hum Mol Genet 21(23):5209–5221

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang R et al (2016) A common variant in CLDN14 is associated with primary biliary cirrhosis and bone mineral density. Sci Rep 6:19877

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu S et al (2023) The causal relationship between autoimmune diseases and osteoporosis: a study based on Mendelian randomization. Front Endocrinol (Lausanne) 14:1196269

Article  PubMed  Google Scholar 

Davey Smith G, Hemani G (2014) Hemani, Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 23(R1):89–98

Article  Google Scholar 

Skrivankova VW et al (2021) Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ 375:n2233

Article  PubMed  PubMed Central  Google Scholar 

Emdin CA, Khera AV, Kathiresan S (2017) Mendelian randomization. JAMA 318(19):1925–1926

Article  PubMed  Google Scholar 

Cordell HJ et al (2021) An international genome-wide meta-analysis of primary biliary cholangitis: novel risk loci and candidate drugs. J Hepatol 75(3):572–581

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou W et al (2018) Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat Genet 50(9):1335–1341

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sakaue S et al (2021) A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet 53(10):1415–1424

Article  CAS  PubMed  Google Scholar 

Lam M et al (2020) RICOPILI: Rapid Imputation for COnsortias PIpeLIne. Bioinformatics 36(3):930–933

Article  CAS  PubMed  Google Scholar 

Watanabe K et al (2017) Functional mapping and annotation of genetic associations with FUMA. Nat Commun 8(1):1826

Article  PubMed  PubMed Central  Google Scholar 

Pulit SL et al (2019) Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum Mol Genet 28(1):166–174

Article  CAS  PubMed  Google Scholar 

Revez JA et al (2020) Genome-wide association study identifies 143 loci associated with 25 hydroxyvitamin D concentration. Nat Commun 11(1):1647

Article  PubMed  PubMed Central  Google Scholar 

Mbatchou J et al (2021) Computationally efficient whole-genome regression for quantitative and binary traits. Nat Genet 53(7):1097–1103

Article  CAS  PubMed  Google Scholar 

Graham SE et al (2021) The power of genetic diversity in genome-wide association studies of lipids. Nature 600(7890):675–679

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmitz D et al (2021) Genome-wide association study of estradiol levels and the causal effect of estradiol on bone mineral density. J Clin Endocrinol Metab 106(11):e4471–e4486

Article  PubMed  PubMed Central  Google Scholar 

Ruth KS et al (2020) Using human genetics to understand the disease impacts of testosterone in men and women. Nat Med 26(2):252–258

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgess S, Davies NM, Thompson SG (2016) Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol 40(7):597–608

Article  PubMed  PubMed Central  Google Scholar 

Bulik-Sullivan BK et al (2015) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47(3):291–295

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mounier N, Kutalik Z (2023) Bias correction for inverse variance weighting Mendelian randomization. Genet Epidemiol 47(4):314–331

Article  CAS 

留言 (0)

沒有登入
gif