Update on Therapy for Myotonic Dystrophy Type 1

Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member. Cell. 1992 Feb 21;68(4):799–808. https://doi.org/10.1016/0092-8674(92)90154-5.

Aslanidis C, Jansen G, Amemiya C, Shutler G, Mahadevan M, Tsilfidis C, et al. Cloning of the essential myotonic dystrophy region and mapping of the putative defect. Nature. 1992;355(6360):548–51. https://doi.org/10.1038/355548a0.

Article  CAS  PubMed  Google Scholar 

Bird TD. Myotonic Dystrophy Type 1. 1999 Sep 17 [updated 2021 Mar 25]. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2023. PMID: 20301344.

Liao Q, Zhang Y, He J, Huang K. Global prevalence of myotonic dystrophy: an updated systematic review and meta-analysis. Neuroepidemiology. 2022;56:163–73. https://doi.org/10.1159/000524734.

Article  PubMed  Google Scholar 

Udd B, Krahe R. The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol. 2012;11(10):891–905.

Article  CAS  PubMed  Google Scholar 

Johnson NE, Butterfield RJ, Mayne K, Newcomb T, Imburgia C, Dunn D, Duval B, Feldkamp ML, Weiss RB. Population-based prevalence of myotonic dystrophy type 1 using genetic analysis of statewide blood screening program. Neurology. 2021 Feb 16;96(7):e1045–e1053. https://doi.org/10.1212/WNL.0000000000011425. Epub 2021 Jan 20. PMID: 33472919; PMCID: PMC8055332.

Suominen T, Bachinski LL, Auvinen S, Hackman P, Baggerly KA, Angelini C et al. Population frequency of myotonic dystrophy: higher than expected frequency of myotonic dystrophy type 2 (DM2) mutation in Finland. Eur J Hum Genet. 2011 Jul;19(7):776–82. https://doi.org/10.1038/ejhg.2011.23. Epub 2011 Mar 2. PMID: 21364698; PMCID: PMC3137497.

Pagola-Lorz I, Vicente E, Ibáñez B, Torné L, Elizalde-Beiras I, Garcia-Solaesa V, García F, Delfrade J, Jericó I. Epidemiological study and genetic characterization of inherited muscle diseases in a northern Spanish region. Orphanet J Rare Dis. 2019;14(1):276. https://doi.org/10.1186/s13023-019-1227-x.

Article  PubMed  PubMed Central  Google Scholar 

Mathieu J, Prévost C. Epidemiological surveillance of myotonic dystrophy type 1: a 25-year population-based study. Neuromuscul Disord. 2012;22(11):974–9. https://doi.org/10.1016/j.nmd.2012.05.017. Epub 2012 Aug 1 PMID: 22858159.

Article  PubMed  Google Scholar 

Yamagata H, Nakagawa M, Johnson K, Miki T. Further evidence for a major ancient mutation underlying myotonic dystrophy from linkage disequilibrium studies in the Japanese population. J Hum Genet. 1998;43(4):246–9.

Article  CAS  PubMed  Google Scholar 

Ashizawa T, Epstein HF. Ethnic distribution of myotonic dystrophy gene. Lancet. 1991;338(8767):642–3.

Article  CAS  PubMed  Google Scholar 

Nakagawa M, Nakahara K, Yoshidome H, Suehara M, Higuchi I, Fujiyama J, Nakamura A, Kubota R, Takenaga S, Arahata K, et al. Epidemiology of progressive muscular dystrophy in Okinawa, Japan. Classification with molecular biological techniques Neuroepidemiology. 1991;10(4):185–91.

CAS  PubMed  Google Scholar 

Hsiao KM, Chen SS, Li SY, Chiang SY, Lin HM, Pan H, Huang CC, Kuo HC, Jou SB, Su CC, Ro LS, Liu CS, Lo MC, Chen CM, Lin CC. Epidemiological and genetic studies of myotonic dystrophy type 1 in Taiwan. Neuroepidemiology. 2003;22(5):283–9. https://doi.org/10.1159/000071191. PMID: 12902623.

Krahe R, Eckhart M, Ogunniyi AO, Osuntokun BO, Siciliano MJ, Ashizawa T. De novo myotonic dystrophy mutation in a Nigerian kindred. Am J Hum Genet. 1995;56:1067–74.

CAS  PubMed  PubMed Central  Google Scholar 

Worku DK. Concurrence of myotonic dystrophy and epilepsy: a case report. J Med Case Rep. 2015;8:427.

Article  Google Scholar 

Meola G, Cardani R. Myotonic dystrophies: an update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim Biophys Acta. 2015;1852(4):594–606. https://doi.org/10.1016/j.bbadis.2014.05.019. Epub 2014 May 29 PMID: 24882752.

Article  CAS  PubMed  Google Scholar 

Rakocević-Stojanović V, Savić D, Pavlović S, Lavrnić D, Stević Z, Basta I, Romac S, Apostolski S. Intergenerational changes of CTG repeat depending on the sex of the transmitting parent in myotonic dystrophy type 1. Eur J Neurol. 2005;12(3):236–7.

Article  PubMed  Google Scholar 

Higham CF, Morales F, Cobbold CA, Haydon DT, Monckton DG. High levels of somatic DNA diversity at the myotonic dystrophy type 1 locus are driven by ultra-frequent expansion and contraction mutations. Hum Mol Genet. 2012;21(11):2450–63. https://doi.org/10.1093/hmg/dds059. Epub 2012 Feb 24 PMID: 22367968.

Article  CAS  PubMed  Google Scholar 

Cumming SA, Jimenez-Moreno C, Okkersen K, Wenninger S, Daidj F, Hogarth F, Littleford R, Gorman G, Bassez G, Schoser B, Lochmüller H, van Engelen BGM, Monckton DG; OPTIMISTIC Consortium. Genetic determinants of disease severity in the myotonic dystrophy type 1 OPTIMISTIC cohort. Neurology. 2019;93(10):e995–e1009. https://doi.org/10.1212/WNL.0000000000008056. Epub 2019 Aug 8. Erratum in: Neurology. 2020 Mar 10;94(10):459. PMID: 31395669; PMCID: PMC6745735.

Klein AF, Gasnier E, Furling D. Gain of RNA function in pathological cases: focus on myotonic dystrophy. Biochimie. 2011;93(11):2006–12.

Article  CAS  PubMed  Google Scholar 

Jiang H, Mankodi A, Swanson MS, Moxley RT, Thornton CA. Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum Mol Genet. 2004;13(24):3079–88.

Article  CAS  PubMed  Google Scholar 

Mankodi A, Teng-Umnuay P, Krym M, Henderson D, Swanson M, Thornton CA. Ribonuclear inclusions in skeletal muscle in myotonic dystrophy types 1 and 2. Ann Neurol. 2003;54(6):760–8.

Article  CAS  PubMed  Google Scholar 

Kuyumcu-Martinez NM, Wang GS, Cooper TA. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol Cell. 2007;28(1):68–78. https://doi.org/10.1016/j.molcel.2007.07.027.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chau A, Kalsotra A. Developmental insights into the pathology of and therapeutic strategies for DM1: back to the basics. Dev Dyn. 2015:377–390. https://doi.org/10.1002/dvdy.24240.

Kalsotra A, Xiao X, Ward AJ, Castle JC, Johnson JM, Burge CB, et al. A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc Natl Acad Sci USA. 2008;105:20333–8. https://doi.org/10.1073/pnas.0809045105.

Article  PubMed  PubMed Central  Google Scholar 

Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT, et al. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum Mol Genet. 2006;15:2087–97. https://doi.org/10.1093/hmg/ddl132.

Article  CAS  PubMed  Google Scholar 

• López-Martínez A, Soblechero-Martín P, de-la-Puente-Ovejero L, Nogales-Gadea G, Arechavala-Gomeza V. An overview of alternative splicing defects implicated in myotonic dystrophy type I. Genes (Basel). 2020 Sep 22;11(9):1109. https://doi.org/10.3390/genes11091109. Overview of the DM1 pathophysiology.

Furling D, Lemieux D, Taneja K, Puymirat J. Decreased levels of myotonic dystrophy protein kinase (DMPK) and delayed differentiation in human myotonic dystrophy myoblasts. Neuromuscul Disord. 2001;11(8):728–35.

Article  CAS  PubMed  Google Scholar 

Yin Q, Wang H, Li N, Ding Y, Xie Z, Jin L, et al. Dosage effect of multiple genes accounts for multisystem disorder of myotonic dystrophy type 1. Cell Res. 2020;30(2):133–45. https://doi.org/10.1038/s41422-019-0264-2.

Article  CAS  PubMed  Google Scholar 

Reddy S, Smith DB, Rich MM, Leferovich JM, Reilly P, Davis BM, et al. Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nat Genet. 1996;13:325–35.

Article  CAS  PubMed  Google Scholar 

Berul CI, Maguire CT, Gehrmann J, Reddy S. Progressive atrioventricular conduction block in a mouse myotonic dystrophy model. J Interv Card Electrophysiol. 2000;4:351–8.

Article  CAS  PubMed  Google Scholar 

Sarkar PS, et al. Heterozygous loss of Six5 in mice is sufficient to cause ocular cataracts. Nat Genet. 2000;25:110–4. https://doi.org/10.1038/75500.

Article  CAS  PubMed  Google Scholar 

Cleary JD, Pattamatta A, Ranum LPW. Repeat-associated non-ATG (RAN) translation. J Biol Chem. 2018;293(42):16127–41. https://doi.org/10.1074/jbc.R118.003237.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banez-Coronel M, Ranum LPW. Repeat-associated non-AUG (RAN) translation: insights from pathology. Lab Invest. 2019;99(7):929–42. https://doi.org/10.1038/s41374-019-0241-x.

Article  PubMed  PubMed Central  Google Scholar 

Koehorst E, Núñez-Manchón J, Ballester-López A, Almendrote M, Lucente G, Arbex A, et al. Characterization of RAN translation and antisense transcription in primary cell cultures of patients with myotonic dystrophy type 1. J Clin Med. 2021;10(23):5520. https://doi.org/10.3390/jcm10235520.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wenninger S, Montagnese F, Schoser B. Core Clinical phenotypes in myotonic dystrophies. Front Neurol. 2018;2(9):303. https://doi.org/10.3389/fneur.2018.00303.

Article  Google Scholar 

Johnson NE, Heatwole CR. Myotonic dystrophy: from bench to bedside. Semin Neurol. 2012;32(3):246–54.

Article  PubMed  Google Scholar 

Kroksmark AK, Stridh ML, Ekström AB. Long-term follow-up of motor function and muscle strength in the congenital and childhood forms of myotonic dystrophy type 1. Neuromuscul Disord. 2017;27:826–35.

Article  PubMed  Google Scholar 

Rakocevic-Stojanovic V, Peric S, Basta I, Dobricic V, Ralic V, Kacar A, … Novakovic I. Variability of multisystemic features in myotonic dystrophy type 1 – lessons from Serbian registry. Neurol Res. 2015;37(11):939–44. https://doi.org/10.1179/1743132815y.000000006.

Ikeda KS, Iwabe-Marchese C, França MC Jr, Nucci A, Carvalho KM. Myotonic dystrophy type 1: frequency of ophthalmologic findings. Arq Neuropsiquiatr. 2016;74(3):183–8. https://doi.org/10.1590/0004-282x20150218.

Article  PubMed  Google Scholar 

Kersten HM, Roxburgh RH, Child N, Polkinghorne PJ, Frampton C, Danesh-Meyer HV. Epiretinal membrane: a treatable cause of visual disability in myotonic dystrophy type 1. J Neurol. 2014;261(1):37–44. https://doi.org/10.1007/s00415-013-7141-6.

Article  PubMed  Google Scholar 

Harper PS. The eye in myotonic dystrophy. In: Harper PS editor, Myotonic dystrophy. London: WB. Saunders; 2001. Chapter 8, p. 199–221.

Rakocevic Stojanovic V, Peric S, Paunic T, Pavlovic S, Cvitan E, Basta I, et al. Cardiologic predictors of sudden death in patients with myotonic dystrophy type 1. J Clin Neurosci. 2013;20(7):1002–6.

Article  PubMed  Google Scholar 

Groh WJ, Groh MR, Saha C, Kincaid JC, Simmons Z, Ciafaloni E, et al. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N Engl J Med. 2008;358(25):2688–97. https://doi.org/10.1056/NEJMoa062800.

Article  CAS

留言 (0)

沒有登入
gif