Long non-coding RNA in coronary artery disease: the role of PDXDC1-AS1 and SFI1-AS1

Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife. https://doi.org/10.7554/eLife.05005

Autuoro JM, Pirnie SP, Carmichael GG (2014) Long noncoding RNAs in imprinting and X chromosome inactivation. Biomolecules 4(1):76–100. https://doi.org/10.3390/biom4010076

Article  CAS  PubMed  PubMed Central  Google Scholar 

Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152(6):1298–1307. https://doi.org/10.1016/j.cell.2013.02.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bian W, Jiang XX, Wang Z et al (2021) Comprehensive analysis of the ceRNA network in coronary artery disease. Sci Rep 11(1):24279. https://doi.org/10.1038/s41598-021-03688-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brezinka V (1995) Gender bias in diagnosis and treatment of women with coronary heart disease. A review. Z Kardiol 84(2):99–104 Ungleichheiten bei Diagnostik und Behandlung von Frauen mit koronarer Herzkrankheit. Eine Ubersicht

CAS  PubMed  Google Scholar 

Cai Y, Yang Y, Chen X et al (2016a) Circulating “LncPPARdelta” from monocytes as a novel biomarker for coronary artery diseases. Medicine (Baltimore) 95(6):e2360. https://doi.org/10.1097/MD.0000000000002360

Article  CAS  PubMed  Google Scholar 

Cai Y, Yang Y, Chen X et al (2016b) Circulating ‘lncRNA OTTHUMT00000387022’ from monocytes as a novel biomarker for coronary artery disease. Cardiovasc Res 112(3):714–724. https://doi.org/10.1093/cvr/cvw022

Article  CAS  PubMed  Google Scholar 

Choi JH, Zhong X, McAlpine W et al (2019) LMBR1L regulates lymphopoiesis through Wnt/beta-catenin signaling. Science 364(6440). https://doi.org/10.1126/science.aau0812

Dindhoria K, Monga I, Thind AS (2022) Computational approaches and challenges for identification and annotation of non-coding RNAs using RNA-Seq. Funct Integr Genomics 22(6):1105–1112. https://doi.org/10.1007/s10142-022-00915-y

Article  CAS  PubMed  Google Scholar 

Franzeck FC, Hof D, Spescha RD et al (2012) Expression of the aging gene p66Shc is increased in peripheral blood monocytes of patients with acute coronary syndrome but not with stable coronary artery disease. Atherosclerosis 220(1):282–286. https://doi.org/10.1016/j.atherosclerosis.2011.10.035

Article  CAS  PubMed  Google Scholar 

Gensini GG (1983) A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol 51(3):606. https://doi.org/10.1016/s0002-9149(83)80105-2

Article  CAS  PubMed  Google Scholar 

Heidenreich PA, Trogdon JG, Khavjou OA et al (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123(8):933–944. https://doi.org/10.1161/CIR.0b013e31820a55f5

Article  PubMed  Google Scholar 

Hildebrandt A, Kirchner B, Meidert AS et al (2021) Detection of atherosclerosis by small RNA-sequencing analysis of extracellular vesicle enriched serum samples. Front Cell Dev Biol 9:729061. https://doi.org/10.3389/fcell.2021.729061

Article  PubMed  PubMed Central  Google Scholar 

Hu H, Lin Y, Xu X, Lin S, Chen X, Wang S (2020) The alterations of mitochondrial DNA in coronary heart disease. Exp Mol Pathol 114:104412. https://doi.org/10.1016/j.yexmp.2020.104412

Article  CAS  PubMed  Google Scholar 

Jeggari A, Marks DS, Larsson E (2012) miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics 28(15):2062–2063. https://doi.org/10.1093/bioinformatics/bts344

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ji WF, Chen JX, He S et al (2021) Characteristics of circular RNAs expression of peripheral blood mononuclear cells in humans with coronary artery disease. Physiol Genomics 53(8):349–357. https://doi.org/10.1152/physiolgenomics.00020.2021

Article  CAS  PubMed  Google Scholar 

Jin G, Zheng J, Zhang Y, Yang Z, Chen Y, Huang C (2022) LncRNA UCA1 epigenetically suppresses APAF1 expression to mediate the protective effect of sevoflurane against myocardial ischemia-reperfusion injury. Funct Integr Genomics 22(5):965–975. https://doi.org/10.1007/s10142-022-00874-4

Article  CAS  PubMed  Google Scholar 

Khamis RY, Ammari T, Mikhail GW (2016) Gender differences in coronary heart disease. Heart 102(14):1142–1149. https://doi.org/10.1136/heartjnl-2014-306463

Article  CAS  PubMed  Google Scholar 

Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–D162. https://doi.org/10.1093/nar/gky1141

Article  CAS  PubMed  Google Scholar 

Li L, Song X (2016) The working modules of long noncoding RNAs in cancer cells. Adv Exp Med Biol 927:49–67. https://doi.org/10.1007/978-981-10-1498-7_2

Article  CAS  PubMed  Google Scholar 

Li L, Wang L, Li H et al (2018) Characterization of LncRNA expression profile and identification of novel LncRNA biomarkers to diagnose coronary artery disease. Atherosclerosis 275:359–367. https://doi.org/10.1016/j.atherosclerosis.2018.06.866

Article  CAS  PubMed  Google Scholar 

Li Q, Li B, Wang X et al (1997) Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J Clin Invest 100(8):1991–1999. https://doi.org/10.1172/JCI119730

Article  CAS  PubMed  PubMed Central  Google Scholar 

Libby P, Theroux P (2005) Pathophysiology of coronary artery disease. Circulation. 111(25):3481–3488. https://doi.org/10.1161/CIRCULATIONAHA.105.537878

Article  PubMed  Google Scholar 

Liu W, Jiang X, Li X et al (2022) LMBR1L regulates the proliferation and migration of endothelial cells through Norrin/beta-catenin signaling. J Cell Sci 135(6). https://doi.org/10.1242/jcs.259468

Malakar AK, Choudhury D, Halder B, Paul P, Uddin A, Chakraborty S (2019) A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol 234(10):16812–16823. https://doi.org/10.1002/jcp.28350

Article  CAS  PubMed  Google Scholar 

Mensah GA, Roth GA, Fuster V (2019) The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J Am Coll Cardiol 74(20):2529–2532. https://doi.org/10.1016/j.jacc.2019.10.009

Article  PubMed  Google Scholar 

North BJ, Sinclair DA (2012) The intersection between aging and cardiovascular disease. Circ Res 110(8):1097–1108. https://doi.org/10.1161/CIRCRESAHA.111.246876

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paneni F, Cosentino F (2012) p66 Shc as the engine of vascular aging. Curr Vasc Pharmacol 10(6):697–699. https://doi.org/10.2174/157016112803520747

Article  CAS  PubMed  Google Scholar 

Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358. https://doi.org/10.1016/j.cell.2011.07.014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salminen A, Kaarniranta K (2012) AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 11(2):230–241. https://doi.org/10.1016/j.arr.2011.12.005

Article  CAS  PubMed  Google Scholar 

Schonrock N, Harvey RP, Mattick JS (2012) Long noncoding RNAs in cardiac development and pathophysiology. Circ Res 111(10):1349–1362. https://doi.org/10.1161/CIRCRESAHA.112.268953

Article  CAS  PubMed  Google Scholar 

Soerensen M, Nygaard M, Dato S et al (2015) Association study of FOXO3A SNPs and aging phenotypes in Danish oldest-old individuals. Aging Cell 14(1):60–66. https://doi.org/10.1111/acel.12295

Article  CAS  PubMed  Google Scholar 

Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119(9):2758–2771. https://doi.org/10.1172/JCI39162

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344-352. https://doi.org/10.1038/nature12986

Tsai WC, Chiang WH, Wu CH et al (2020) miR-548aq-3p is a novel target of Far infrared radiation which predicts coronary artery disease endothelial colony forming cell responsiveness. Sci Rep 10(1):6805. https://doi.org/10.1038/s41598-020-63311-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winkelmann BR, Hager J (2000) Genetic variation in coronary heart disease and myocardial infarction: methodological overview and clinical evidence. Pharmacogenomics 1(1):73–94. https://doi.org/10.1517/14622416.1.1.73

Article  CAS  PubMed  Google Scholar 

Yan LR, Ding HX, Shen SX, Lu XD, Yuan Y, Xu Q (2021) Pepsinogen C expression-related lncRNA/circRNA/mRNA profile and its co-mediated ceRNA network in gastric cancer. Funct Integr Genomics 21(5-6):605–618. https://doi.org/10.1007/s10142-021-00803-x

Article  CAS  PubMed  Google Scholar 

Yang Y, Cai Y, Wu G et al (2015) Plasma long non-coding RNA, CoroMarker, a novel biomarker for diagnosis of coronary artery disease. Clin Sci (Lond) 129(8):675–685. https://doi.org/10.1042/CS20150121

Article  CAS  PubMed 

留言 (0)

沒有登入
gif