Altúzar-Molina A, Lozano L, Ortíz-Berrocal M, Ramírez M, Martínez L, de Lourdes Velázquez-Hernández M, Dhar-Ray S, Silvente S, Mariano N, Shishkova S, Hernández G, Reddy PM (2020) Expression of the legume-specific nod factor receptor proteins alters Developmental and Immune responses in Rice. Plant Mol Biol Rep 38:262–281. https://doi.org/10.1007/s11105-019-01188-9
Badger MR, Hanson D, Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29:161–173. https://doi.org/10.1071/pp01213
Article CAS PubMed Google Scholar
Baumgart M, Huber I, Abdollahzadeh I, Gensch T, Frunzke J (2017) Heterologous expression of the Halothiobacillus neapolitanus carboxysomal gene cluster in Corynebacterium glutamicum. J Biotechnol 258:126–135. https://doi.org/10.1016/j.jbiotec.2017.03.019
Article CAS PubMed Google Scholar
Cameron JC, Wilson SC, Bernstein SL, Kerfeld CA (2013) XBiogenesis of a bacterial organelle: the carboxysome assembly pathway. Cell 155:1131. https://doi.org/10.1016/j.cell.2013.10.044
Article CAS PubMed Google Scholar
Chen AH, Robinson-Mosher A, Savage DF, Silver PA, Polka JK (2013) The bacterial Carbon-fixing organelle is formed by Shell Envelopment of Preassembled Cargo. PLoS ONE 8:1–13. https://doi.org/10.1371/journal.pone.0076127
Chen T, Wu H, Wu J, Fan X, Li X, Lin Y (2017) Absence of OsβCA1 causes a CO2 deficit and affects leaf photosynthesis and the stomatal response to CO2 in rice. Plant J 90:344–357. https://doi.org/10.1111/tpj.13497
Article CAS PubMed Google Scholar
Chen T, Hojka M, Davey P, Sun Y, Dykes GF, Zhou F, Lawson T, Nixon PJ, Lin Y, Liu LN (2023) Engineering α-carboxysomes into plant chloroplasts to support autotrophic photosynthesis. Plant J 14:1–12. https://doi.org/10.1038/s41467-023-37490-0
Duursma RA (2015) Plantecophys - An R package for analysing and modelling leaf gas exchange data. PLoS ONE 10:1–13. https://doi.org/10.1371/journal.pone.0143346
Fairhurst T, Dobermann A (2002) Rice in the global food supply. Better Corps Int 16:3–6
Fang Y, Huang F, Faulkner M, Jiang Q, Dykes GF, Yang M, Liu LN (2018) Engineering and modulating functional cyanobacterial CO2-fixing organelles. Front Plant Sci 9:1–12. https://doi.org/10.3389/fpls.2018.00739
Farquhar GD, Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90
Article CAS PubMed Google Scholar
Flamholz AI, Dugan E, Blikstad C, Gleizer S, Ben-Nissan R, Amram S, Antonovsky N, Ravishankar S, Noor E, Bar-Even A, Milo R, Savage DF (2020) Functional reconstitution of a bacterial co2 concentrating mechanism in e. Coli Elife 9:1–57. https://doi.org/10.7554/eLife.59882
Gonzalez-Esquer CR, Shubitowski TB, Kerfeld CA (2015) Streamlined construction of the cyanobacterial CO2-fixing organelle via protein domain fusions for use in plant synthetic biology. Plant Cell 27:2637–2644. https://doi.org/10.1105/tpc.15.00329
Article CAS PubMed PubMed Central Google Scholar
Hanson MR, Lin MT, Carmo-Silva AE, Parry MAJ (2016) Towards engineering carboxysomes into C3 plants. Plant J 87:38–50. https://doi.org/10.1111/tpj.13139
Article CAS PubMed PubMed Central Google Scholar
He S, Crans VL, Jonikas MC (2023) The pyrenoid: the eukaryotic CO2-concentrating organelle. Plant Cell 35:3236–3259. https://doi.org/10.1093/plcell/koad157
Article PubMed PubMed Central Google Scholar
Hennacy JH, Jonikas MC (2020) Prospects for Engineering Biophysical CO2 concentrating mechanisms into land plants to enhance yields. Annu Rev Plant Biol 71:461–485. https://doi.org/10.1146/annurev-arplant-081519-040100
Article CAS PubMed PubMed Central Google Scholar
Hines KM, Chaudhari V, Edgeworth KN, Owens TG, Hanson MR (2021) Absence of carbonic anhydrase in chloroplasts affects C3 plant development but not photosynthesis. Proc Natl Acad Sci U S A 118. https://doi.org/10.1073/pnas.2107425118
Hudson GS, Evans JR, Von Caemmerer S, Arvidsson YBC, Andrews TJ (1992) Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase content by antisense RNA reduces photosynthesis in transgenic tobacco plants. Plant J 98:294–302. https://doi.org/10.1104/pp.98.1.294
Jang I, Lee K, Nahm BH, Kim J (2002) Chloroplast targeting signal of a rice rbcS gene enhances transgene expression. 81–92
Khan MS, Maliga P (1999) a B a B C D E. 17
Kinney JN, Salmeen A, Cai F, Kerfeld CA (2012) Elucidating essential role of conserved carboxysomal protein CcmN reveals common feature of bacterial microcompartment assembly. J Biol Chem 287:17729–17736. https://doi.org/10.1074/jbc.M112.355305
Article CAS PubMed PubMed Central Google Scholar
Lee SM, Kang K, Chung H, Yoo SH, Xu XM, Lee SB, Cheong JJ, Daniell H, Kim M (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21:401–410. https://doi.org/10.1016/s1016-8478(23)12870-6
Article CAS PubMed Google Scholar
Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R (2004) RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot 55:983–992. https://doi.org/10.1093/jxb/erh122
Article CAS PubMed Google Scholar
Lin MT, Occhialini A, Andralojc PJ, Devonshire J, Hines KM, Parry MAJ, Hanson MR (2014a) β-Carboxysomal proteins assemble into highly organized structures in Nicotiana chloroplasts. Plant J 79:1–12. https://doi.org/10.1111/tpj.12536
Article CAS PubMed PubMed Central Google Scholar
Lin MT, Occhialini A, Andralojc PJ, Parry MAJ, Hanson MR (2014b) A faster rubisco with potential to increase photosynthesis in crops. Plant J 513:547–550. https://doi.org/10.1038/nature13776
Liu LN, Yang M, Sun Y, Yang J (2021) Protein stoichiometry, structural plasticity and regulation of bacterial microcompartments. Curr Opin Microbiol 63:133–141. https://doi.org/10.1016/j.mib.2021.07.006
Article CAS PubMed Google Scholar
Long BM, Price GD, Badger MR (2005) Proteomic assessment of an established technique for carboxysome enrichment from Synechococcus PCC7942. Can J Bot 83:746–757. https://doi.org/10.1139/b05-058
Long BM, Badger MR, Whitney SM, Price GD (2007) Analysis of carboxysomes from Synechococcus PCC7942 reveals multiple rubisco complexes with carboxysomal proteins CcmM and CcaA. J Biol Chem 282:29323–29335. https://doi.org/10.1074/jbc.M703896200
Article CAS PubMed Google Scholar
Long BM, Hee WY, Sharwood RE, Rae BD, Kaines S, Lim YL, Nguyen ND, Massey B, Bala S, von Caemmerer S, Badger MR, Price GD (2018) Carboxysome encapsulation of the CO2-fixing enzyme Rubisco in tobacco chloroplasts. Nat Commun 9. https://doi.org/10.1038/s41467-018-06044-0
Ludwig M, Hartwell J, Raines CA, Simkin AJ (2024) The Calvin-Benson-Bassham cycle in C4 and crassulacean acid metabolism species. Semin Cell Dev Biol 155:10–22. https://doi.org/10.1016/j.semcdb.2023.07.013
Article CAS PubMed Google Scholar
Maheshwari C, Coe RA, Karki S, Covshoff S, Tapia R, Tyagi A, Hibberd JM, Furbank RT, Quick WP, Lin HC (2021) Targeted knockdown of ribulose-1, 5-bisphosphate carboxylase-oxygenase in rice mesophyll cells. Plant J 260:153395. https://doi.org/10.1016/j.jplph.2021.153395
Makino A, Shimada T, Takumi S, Kaneko K, Matsuoka M, Shimamoto K, Nakano H, Miyao-Tokutomi M, Mae T, Yamamoto N (1997) Does decrease in ribulose-1,5-bisphosphate carboxylase by antisense rbcS lead to a higher N-use efficiency of photosynthesis under conditions of saturating CO2 and light in rice plants? Plant J 114:483–491. https://doi.org/10.1104/pp.114.2.483
McGrath JM, Long SP (2014) Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis. Plant Physiol 164:2247–2261. https://doi.org/10.1104/pp.113.232611
留言 (0)