Circular RNAs in the pathogenesis of SARS-CoV-2: potential diagnostic biomarkers and therapeutic targets

Aat N, Li Y, Zhang H et al (2020) Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach. Biochim Biophys Acta Mol Basis Dis 1866(10):165878. https://doi.org/10.1016/j.bbadis.2020.165878

Article  CAS  Google Scholar 

Abere B, Li J, Zhou H et al (2020a) Kaposi’s sarcoma-associated herpesvirus-encoded circRNAs are expressed in infected tumor tissues and are incorporated into virions. mBio 11(1):e03027–e03019. https://doi.org/10.1128/mBio.03027-19

Article  PubMed  PubMed Central  CAS  Google Scholar 

Abere B, Liu H, Guo Z et al (2020b) Merkel cell polyomavirus encodes circular RNAs enabling a dynamic circRNA/microRNA/mRNA regulatory network. mBio 11(6):e03059–e03020. https://doi.org/10.1128/mBio.03059-20

Article  PubMed  PubMed Central  CAS  Google Scholar 

Agliano F, Rathinam VA, Medvedev AE et al (2019) Long noncoding RNAs in host-pathogen interactions. Trends Immunol 40(6):492–510. https://doi.org/10.1016/j.it.2019.04.001

Article  PubMed  PubMed Central  CAS  Google Scholar 

Appelberg S, Gupta S, Svensson Akusjarvi S et al (2020) Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerg Microbes Infect 9(1):1748–1760. https://doi.org/10.1080/22221751.2020.1799723

Article  PubMed  PubMed Central  CAS  Google Scholar 

Aschman T, Schneider J, Greuel S et al (2021) Association between SARS-CoV-2 infection and immune-mediated myopathy in patients who have died. JAMA Neurol 78(8):948–960. https://doi.org/10.1001/jamaneurol.2021.2004

Article  PubMed  Google Scholar 

Ayaz H, Aslam N, Awan F et al (2023) Mapping CircRNA-miRNA-mRNA regulatory axis identifies hsa_circ_0080942 and hsa_circ_0080135 as potential theranostic agents for SARS-CoV-2 infection. PLoS ONE 18(4):e0283589. https://doi.org/10.1371/journal.pone.0283589

Article  PubMed  PubMed Central  CAS  Google Scholar 

Barbagallo D, Palermo C, Barbagallo C et al (2022) Competing endogenous RNA network mediated by circ_3205 in SARS-CoV-2 infected cells. Cell Mol Life Sci 79(2):75. https://doi.org/10.1007/s00018-021-04119-8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Barrett SP, Wang PL, Salzman J (2015) Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife 4:e07540. https://doi.org/10.7554/eLife.07540

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bhardwaj V, Singh A, Choudhary A et al (2023) HIV-1 vpr induces ciTRAN to prevent transcriptional repression of the provirus. Sci Adv 9(36):eadh9170. https://doi.org/10.1126/sciadv.adh9170

Article  PubMed  PubMed Central  CAS  Google Scholar 

Brar G, Farhat NA, Sukhina A et al (2020) Deletion of immune evasion genes provides an effective vaccine design for tumor-associated herpesviruses. NPJ Vaccines 5(1):102. https://doi.org/10.1038/s41541-020-00251-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cadena C, Hur S (2017) Antiviral immunity and circular RNA: no end in sight. Mol Cell 67(2):163–164. https://doi.org/10.1016/j.molcel.2017.07.005

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cai Z, Lu C, He J et al (2021) Identification and characterization of circRNAs encoded by MERS-CoV, SARS-CoV-1 and SARS-CoV-2. Brief Bioinform 22(2):1297–1308. https://doi.org/10.1093/bib/bbaa334

Article  PubMed  CAS  Google Scholar 

Chen YG, Kim MV, Chen X et al (2017) Sensing self and foreign circular RNAs by intron identity. Mol Cell 67(2):228–238e5. https://doi.org/10.1016/j.molcel.2017.05.022

Article  PubMed  PubMed Central  CAS  Google Scholar 

Coperchini F, Chiovato L, Croce L et al (2020) The cytokine storm in COVID-19: an overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 53:25–32. https://doi.org/10.1016/j.cytogfr.2020.05.003

Article  PubMed  PubMed Central  CAS  Google Scholar 

Demirci YM, Saçar Demirci MD (2021) Circular RNA-microRNA-mRNA interaction predictions in SARS-CoV-2 infection. J Integr Bioinform 18(1):45–50. https://doi.org/10.1515/jib-2020-0047

Article  PubMed  PubMed Central  Google Scholar 

Du WW, Zhang C, Yang W et al (2017) Identifying and characterizing circRNA-protein interaction. Theranostics 7(17):4183–4191. https://doi.org/10.7150/thno.21299

Article  PubMed  PubMed Central  CAS  Google Scholar 

Du L, Wang X, Liu J et al (2021) A previously undiscovered circular RNA, circTNFAIP3, and its role in coronavirus replication. mBio 12(6):e0298421. https://doi.org/10.1128/mBio.02984-21

Article  PubMed  Google Scholar 

Duan JL, Shen XZ, Feng J et al (2022) A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma. Mol Cancer 21:93. https://doi.org/10.1186/s12943-022-01537-5

Article  PubMed  PubMed Central  CAS  Google Scholar 

Enguita FJ, Duarte R, Simões F et al (2022) The interplay between lncRNAs, RNA-binding proteins and viral genome during SARS-CoV-2 infection reveals strong connections with regulatory events involved in RNA metabolism and immune response. Theranostics 12(8):3946–3962. https://doi.org/10.7150/thno.73268

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fernández-Pato A, Virseda-Berdices A, Fraile-Martínez O et al (2022) Plasma miRNA profile at COVID-19 onset predicts severity status and mortality. Emerg Microbes Infect 11(1):676–688. https://doi.org/10.1080/22221751.2022.2038021

Article  PubMed  PubMed Central  CAS  Google Scholar 

Firoozi Z, Zhao T, Ahn SH et al (2022) Hsa_circ_0000479/Hsa-miR-149-5p/RIG-I, IL-6 Axis: a potential novel pathway to regulate immune response against COVID-19. Can J Infect Dis Med Microbiol 2022:2762582. https://doi.org/10.1155/2022/2762582

Article  PubMed  PubMed Central  Google Scholar 

Fung SY, Yuen KS, Ye ZW et al (2020) A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg Microbes Infect 9(1):558–570. https://doi.org/10.1080/22221751.2020.1736644

Article  CAS  Google Scholar 

Ge J, Wang J, Xiong F et al (2021) Epstein-Barr virus-encoded circular RNA CircBART2.2 promotes immune escape of nasopharyngeal carcinoma by regulating PD-L1. Cancer Res 81(19):4321. https://doi.org/10.1158/0008-5472.CAN-20-4321

Article  Google Scholar 

Giannella A, Riccetti S, Sinigaglia A et al (2022) Circulating microRNA signatures associated with disease severity and outcome in COVID-19 patients. Front Immunol 13:968991. https://doi.org/10.3389/fimmu.2022.968991

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gong LP, Chen JM, Dong M et al (2020) Epstein-Barr virus-derived circular RNA LMP2A induces stemness in EBV-associated gastric cancer. EMBO Rep 21(10):e49689. https://doi.org/10.15252/embr.201949689

Article  PubMed  PubMed Central  CAS  Google Scholar 

Guan H, Wang Y, Perčulija V et al (2020) Cryo-electron microscopy structure of the swine acute diarrhea syndrome coronavirus spike glycoprotein provides insights into evolution of unique coronavirus spike proteins. J Virol 94(22):e01301–e01320. https://doi.org/10.1128/JVI.01301-20

Article 

留言 (0)

沒有登入
gif