Nakase K, Aoki S, Sei S, Fukumoto S, Horiuchi Y, Yasuda T, et al. Characterization of acne patients carrying clindamycin-resistant Cutibacterium acnes: A Japanese multicenter study. J Dermatol. 2020;47:863–9.
Article CAS PubMed Google Scholar
Hayashi N, Akamatsu H, Iwatsuki K, Shimada-Omori R, Kaminaka C, Kurokawa I, et al. Japanese dermatological association guidelines: Guidelines for the treatment of acne vulgaris 2017. J Dermatol. 2018;45:898–935.
Nakase K, Hayashi N, Akiyama Y, Aoki S, Noguchi N. Antimicrobial susceptibility and phylogenetic analysis of Propionibacterium acnes isolated from acne patients in Japan between 2013 and 2015. J Dermatol. 2017;44:1248–54.
Article CAS PubMed Google Scholar
Sardana K, Gupta T, Garg VK, Ghunawat S. Antibiotic resistance to Propionobacterium acnes: worldwide scenario, diagnosis and management. Expert Rev Anti Infect Ther. 2015;13:883–96.
Article CAS PubMed Google Scholar
Nakase K, Yoshida A, Saita H, Hayashi N, Nishijima S, Nakaminami H, et al. Relationship between quinolone use and resistance of Staphylococcus epidermidis in patients with acne vulgaris. J Dermatol. 2019;46:782–6.
Article CAS PubMed Google Scholar
Schommer NN, Gallo RL. Structure and function of the human skin microbiome. Trends Microbiol. 2013;21:660–8.
Article CAS PubMed PubMed Central Google Scholar
Chiller K, Selkin BA, Murakawa GJ. Skin microflora and bacterial infections of the skin. J Investig Dermatol Symp Proc. 2001;6:170–4.
Article CAS PubMed Google Scholar
O’Sullivan JN, Rea MC, O’Connor PM, Hill C, Ross RP. Human skin microbiota is a rich source of bacteriocin-producing staphylococci that kill human pathogens. FEMS Microbiol Ecol. 2019;95:fiy241.
Khalfallah G, Gartzen R, Moller M, Heine E, Lutticken R. A new approach to harness probiotics against common bacterial skin pathogens: Towards living antimicrobials. Probiot Antimicrob Proteins. 2021;13:1557–71.
Gallo RL, Murakami M, Ohtake T, Zaiou M. Biology and clinical relevance of naturally occurring antimicrobial peptides. J Allergy Clin Immunol. 2002;110:823–31.
Article CAS PubMed Google Scholar
Khelissa S, Chihib NE, Gharsallaoui A. Conditions of nisin production by Lactococcus lactis subsp. lactis and its main uses as a food preservative. Arch Microbiol. 2021;203:465–80.
Article CAS PubMed Google Scholar
Gotz F, Perconti S, Popella P, Werner R, Schlag M. Epidermin and gallidermin: Staphylococcal lantibiotics. Int J Med Microbiol. 2014;304:63–71.
Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9:244–53.
Article CAS PubMed PubMed Central Google Scholar
Rosenthal M, Goldberg D, Aiello A, Larson E, Foxman B. Skin microbiota: microbial community structure and its potential association with health and disease. Infect Genet Evol. 2011;11:839–48.
Article PubMed PubMed Central Google Scholar
Nakase K, Nakaminami H, Takenaka Y, Hayashi N, Kawashima M, Noguchi N. Relationship between the severity of acne vulgaris and antimicrobial resistance of bacteria isolated from acne lesions in a hospital in Japan. J Med Microbiol. 2014;63:721–8.
Article CAS PubMed Google Scholar
Aoki S, Nakase K, Hayashi N, Noguchi N. Transconjugation of erm(X) conferring high-level resistance of clindamycin for Cutibacterium acnes. J Med Microbiol. 2019;68:26–30.
Article CAS PubMed Google Scholar
Nakase K, Okamoto Y, Aoki S, Noguchi N. Long-term administration of oral macrolides for acne treatment increases macrolide-resistant Propionibacterium acnes. J Dermatol. 2018;45:340–3.
Article CAS PubMed Google Scholar
Perez RH, Sugino H, Ishibashi N, Zendo T, Wilaipun P, Leelawatcharamas V, et al. Mutations near the cleavage site of enterocin NKR-5-3B prepeptide reveal new insights into its biosynthesis. Microbiology. 2017;163:431–41.
Article CAS PubMed Google Scholar
Grande Burgos MJ, Pulido RP, Del Carmen Lopez Aguayo M, Galvez A, Lucas R. The cyclic antibacterial peptide enterocin AS-48: Isolation, mode of action, and possible food applications. Int J Mol Sci. 2014;15:22706–27.
Article PubMed PubMed Central Google Scholar
Wirawan RE, Swanson KM, Kleffmann T, Jack RW, Tagg JR. Uberolysin: a novel cyclic bacteriocin produced by Streptococcus uberis. Microbiology. 2007;153:1619–30.
Article CAS PubMed Google Scholar
Masuda Y, Ono H, Kitagawa H, Ito H, Mu F, Sawa N, et al. Identification and characterization of leucocyclicin Q, a novel cyclic bacteriocin produced by Leuconostoc mesenteroides TK41401. Appl Environ Microbiol. 2011;77:8164–70.
Article CAS PubMed PubMed Central Google Scholar
Martin-Visscher LA, van Belkum MJ, Garneau-Tsodikova S, Whittal RM, Zheng J, McMullen LM, et al. Isolation and characterization of carnocyclin A, a novel circular bacteriocin produced by Carnobacterium maltaromaticum UAL307. Appl Environ Microbiol. 2008;74:4756–63.
Article CAS PubMed PubMed Central Google Scholar
Sawa N, Zendo T, Kiyofuji J, Fujita K, Himeno K, Nakayama J, et al. Identification and characterization of lactocyclicin Q, a novel cyclic bacteriocin produced by Lactococcus sp. strain QU 12. Appl Environ Microbiol. 2009;75:1552–8.
Article CAS PubMed PubMed Central Google Scholar
Kemperman R, Kuipers A, Karsens H, Nauta A, Kuipers O, Kok J. Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Appl Environ Microbiol. 2003;69:1589–97.
Article CAS PubMed PubMed Central Google Scholar
Kalmokoff ML, Cyr TD, Hefford MA, Whitford MF, Teather RM. Butyrivibriocin AR10, a new cyclic bacteriocin produced by the ruminal anaerobe Butyrivibrio fibrisolvens AR10: characterization of the gene and peptide. Can J Microbiol. 2003;49:763–73.
Article CAS PubMed Google Scholar
Kawai Y, Kemperman R, Kok J, Saito T. The circular bacteriocins gassericin A and circularin A. Curr Protein Pept Sci. 2004;5:393–8.
Article CAS PubMed Google Scholar
Scholz R, Vater J, Budiharjo A, Wang Z, He Y, Dietel K, et al. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J Bacteriol. 2014;196:1842–52.
Article PubMed PubMed Central Google Scholar
Potter A, Ceotto H, Coelho MLV, Guimaraes AJ, Bastos M. The gene cluster of aureocyclicin 4185: the first cyclic bacteriocin of Staphylococcus aureus. Microbiology. 2014;160:917–28.
Article CAS PubMed Google Scholar
Golneshin A, Gor MC, Williamson N, Vezina B, Van TTH, May BK, et al. Discovery and characterisation of circular bacteriocin plantacyclin B21AG from Lactiplantibacillus plantarum B21. Heliyon. 2020;6:e04715.
Article PubMed PubMed Central Google Scholar
Koizumi J, Nakase K, Hayashi N, Nasu Y, Hirai Y, Nakaminami H. Multidrug-resistant Cutibacterium avidum isolated from patients with acne vulgaris and other infections. J Glob Antimicrob Resist. 2022;28:151–7.
Article CAS PubMed Google Scholar
van de Guchte M, van der Vossen JM, Kok J, Venema G. Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl Environ Microbiol. 1989;55:224–8.
Article PubMed PubMed Central Google Scholar
Morgan-Kiss RM, Cronan JE. The Lactococcus lactis FabF fatty acid synthetic enzyme can functionally replace both the FabB and FabF proteins of Escherichia coli and the FabH protein of Lactococcus lactis. Arch Microbiol. 2008;190:427–37.
Article CAS PubMed PubMed Central Google Scholar
Linares DM, Kok J, Poolman B. Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies. J Bacteriol. 2010;192:5806–12.
Article CAS PubMed PubMed Central Google Scholar
Lo-Ten-Foe JR, de Smet AM, Diederen BM, Kluytmans JA, van Keulen PH. Comparative evaluation of the VITEK 2, disk diffusion, etest, broth microdilution, and agar dilution susceptibility testing methods for colistin in clinical isolates, including heteroresistant Enterobacter cloacae and Acinetobacter baumannii strains. Antimicrob Agents Chemother. 2007;51:3726–30.
Article CAS PubMed PubMed Central Google Scholar
Nakase K, Nakaminami H, Toda Y, Noguchi N. Determination of the mutant prevention concentration and the mutant selection window of topical antimicrobial agents against Propionibacterium acnes. Chemotherapy. 2017;62:94–9.
留言 (0)