The Antagonistic Alterations of Cerebellar Functional Segregation and Integration in Athletes with Fast Demands of Visual-Motor Coordination

Gomez-Pilar J, Corralejo R, Nicolas-Alonso LF, Álvarez D, Hornero R. Neurofeedback training with a motor imagery-based BCI: neurocognitive improvements and EEG changes in the elderly. Med Biol Eng Compu. 2016;54(11):1655–66.

Article  Google Scholar 

Gomez-Pilar J, Corralejo R, Nicolas-Alonso LF, Álvarez D, Hornero R. Assessment of neurofeedback training by means of motor imagery based-BCI for cognitive rehabilitation. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference. 2014;2014:3630–3.

Google Scholar 

Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X. A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng. 2019;16(1): 011001.

Article  Google Scholar 

Mridha MF, Das SC, Kabir MM, Lima AA, Islam MR, Watanobe Y. Brain-computer interface: advancement and challenges. Sensors (Basel, Switzerland). 2021;21(17).

Gao Q, Yu Y, Su X, Tao Z, Zhang M, Wang Y, et al. Adaptation of brain functional stream architecture in athletes with fast demands of sensorimotor integration. Hum Brain Mapp. 2019;40(2):420–31.

Article  Google Scholar 

Tao Z, Gao Q, Yu Y, Chen H. A study of brain plasticity of small-ball players based on ReHo method. Journal of Chengdu Sport University. 2017;43(06):98–102.

Google Scholar 

Shao M, Lin H, Yin D, Li Y, Wang Y, Ma J, et al. Learning to play badminton altered resting-state activity and functional connectivity of the cerebellar sub-regions in adults. PLoS ONE. 2019;14(10): e0223234.

Article  Google Scholar 

Pezoulas VC, Michalopoulos K, Klados MA, Micheloyannis S, Bourbakis NG, Zervakis M. Functional connectivity analysis of cerebellum using spatially constrained spectral clustering. IEEE J Biomed Health Inform. 2019;23(4):1710–9.

Article  Google Scholar 

Sereno MI, Diedrichsen J, Tachrount M, Testa-Silva G, d’Arceuil H, De Zeeuw C. The human cerebellum has almost 80% of the surface area of the neocortex. Proc Natl Acad Sci USA. 2020;117(32):19538–43.

Article  Google Scholar 

Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. Neuroimage. 2010;49(3):2045–52.

Article  Google Scholar 

Barton RA, Venditti C. Rapid evolution of the cerebellum in humans and other great apes. Curr Biol. 2014;24(20):2440–4.

Article  Google Scholar 

Kochiyama T, Ogihara N, Tanabe HC, Kondo O, Amano H, Hasegawa K, et al. Reconstructing the Neanderthal brain using computational anatomy. Sci Rep. 2018;8(1):6296.

Article  Google Scholar 

Di X, Zhu S, Jin H, Wang P, Ye Z, Zhou K, et al. Altered resting brain function and structure in professional badminton players. Brain connectivity. 2012;2(4):225–33.

Article  Google Scholar 

Li W, Kong X, Ma J. Effects of combat sports on cerebellar function in adolescents: a resting-state fMRI study. The British journal of radiology. 2021:20210826.

Friston KJ, editor Introduction experimental design and statistical parametric mapping 2003.

Friston KJ, Frith CD, Frackowiak RSJ. Time-dependent changes in effective connectivity measured with PET. 1993;1(1):69–79.

Google Scholar 

Geweke JF. Measures of conditional linear dependence and feedback between time series. J Am Stat Assoc. 1984;79(388):907–15.

Article  MathSciNet  MATH  Google Scholar 

Ding M, Chen Y, Bressler SL. Granger causality: basic theory and application to neuroscience. Handbook of Time Series Analysis. 2006. p. 437–60.

Deshpande G, LaConte S, James GA, Peltier S, Hu X. Multivariate Granger causality analysis of fMRI data. Hum Brain Mapp. 2009;30(4):1361–73.

Article  Google Scholar 

Jiao Q, Lu G, Zhang Z, Zhong Y, Wang Z, Guo Y, et al. Granger causal influence predicts BOLD activity levels in the default mode network. 2011;32(1):154–61.

Google Scholar 

Gao Q, Duan X, Chen H. Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality. Neuroimage. 2011;54(2):1280–8.

Article  Google Scholar 

Gao Q, Zou K, He Z, Sun X, Chen H. Causal connectivity alterations of cortical-subcortical circuit anchored on reduced hemodynamic response brain regions in first-episode drug-naïve major depressive disorder. Sci Rep. 2016;6:21861.

Article  Google Scholar 

Wu GR, Liao W, Stramaglia S, Ding JR, Chen HF, Marinazzo D. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data. Med Image Anal. 2013;17(3):365–74.

Article  Google Scholar 

Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412(6843):150–7.

Article  Google Scholar 

Lindquist MA, Wager TD. Validity and power in hemodynamic response modeling: a comparison study and a new approach. Hum Brain Mapp. 2007;28(8):764–84.

Article  Google Scholar 

Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113.

Article  Google Scholar 

Malekpour S, Sethares WA. Conditional Granger causality and partitioned Granger causality: differences and similarities. Biol Cybern. 2015;109(6):627–37.

Article  MathSciNet  MATH  Google Scholar 

Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage. 2003;19(4):1273–302.

Article  Google Scholar 

Ji J, Liu J, Liang P, Zhang A. Learning effective connectivity network structure from fMRI data based on artificial immune algorithm. PLoS ONE. 2016;11(4): e0152600.

Article  Google Scholar 

Handwerker DA, Ollinger JM, D’Esposito M. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage. 2004;21(4):1639–51.

Article  Google Scholar 

Wu GR, Marinazzo D. Retrieving the hemodynamic response function in resting state fMRI: methodology and applications. PeerJ PrePrints. 2015;3:6050–3.

Google Scholar 

Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.

Article  Google Scholar 

Colcombe SJ, Kramer AF, Erickson KI, Scalf P, McAuley E, Cohen NJ, et al. Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci USA. 2004;101(9):3316–21.

Article  Google Scholar 

Talukdar T, Nikolaidis A, Zwilling CE, Paul EJ, Hillman CH, Cohen NJ, et al. Aerobic fitness explains individual differences in the functional brain connectome of healthy young adults. Cerebral cortex (New York, NY : 1991). 2018;28(10):3600–9.

King M, Hernandez-Castillo CR, Poldrack RA, Ivry RB, Diedrichsen J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci. 2019;22(8):1371–8.

Article  Google Scholar 

Schmahmann JD. The cerebellum and cognition. Neurosci Lett. 2019;688:62–75.

Article  Google Scholar 

Stoodley CJ, Valera EM, Schmahmann JD. An fMRI study of intra-individual functional topography in the human cerebellum. Behav Neurol. 2010;23(1–2):65–79.

Article  Google Scholar 

Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage. 2012;59(2):1560–70.

Article  Google Scholar 

Schmahmann JD, Guell X, Stoodley CJ, Halko MA. The theory and neuroscience of cerebellar cognition. Annu Rev Neurosci. 2019;42:337–64.

Article  Google Scholar 

Zang Z, Yan C, Dong Z, Huang J, Zang Y. Granger causality analysis implementation on MATLAB: a graphic user interface toolkit for fMRI data processing. J Neurosci Methods. 2012;203(2):418–26.

Article  Google Scholar 

Guo Z, Li A, Yu L. “Neural efficiency” of athletes’ brain during visuo-spatial task: an fMRI study on table tennis players. Front Behav Neurosci. 2017;11:72.

Article  Google Scholar 

Wolf S, Brölz E, Scholz D, Ramos-Murguialday A, Keune PM, Hautzinger M, et al. Winning the game: brain processes in expert, young elite and amateur table tennis players. Front Behav Neurosci. 2014;8:370.

Article  Google Scholar 

Li L, Smith DM. Neural efficiency in athletes: a systematic review. Front Behav Neurosci. 2021;15: 698555.

Article  Google Scholar 

Dietrich A. Transient hypofrontality as a mechanism for the psychological effects of exercise. Psychiatry Res. 2006;145(1):79–83.

Article  MathSciNet  Google Scholar 

Filho E, Dobersek U, Husselman TA. The role of neural efficiency, transient hypofrontality and neural proficiency in optimal performance in self-paced sports: a meta-analytic review. Exp Brain Res. 2021;239(5):1381–93.

Article  Google Scholar 

Holmes PS, Wright DJ. Motor cognition and neuroscience in sport psychology. Curr Opin Psychol. 2017;16:43–7.

Article  Google Scholar 

Bertollo M, Doppelmayr M, Robazza C. Using brain technologies in practice. Handbook Sport Psychol. 2020;666–93.

留言 (0)

沒有登入
gif