Intelligent Inspection Guidance of Urethral Endoscopy Based on SLAM with Blood Vessel Attentional Features

Baumhauer M, Feuerstein M, Meinzer HP, Rassweiler J. Navigation in endoscopic soft tissue surgery: perspectives and limitations. J Endourol. 2008;22(4):751–66.

Article  Google Scholar 

Maguire EA, Burgess N, Donnett JG, Frackowiak RSJ, Frith CD, O’Keefe J. Knowing where and getting there: a human navigation network. Science. 1998;280(5365):921–4.

Article  Google Scholar 

Parra-Barrero E, Vijayabaskaran S, Seabrook E, Wiskott L, Cheng S. A map of spatial navigation for neuroscience. Neurosci Biobehav Rev. 2023;105200. Elsevier

Mur-Artal R, Tardós JD. ORB-SLAM2: an open-source slam system for monocular, stereo, and RGB-D cameras. IEEE Trans Rob. 2017;33(5):1255–62.

Article  Google Scholar 

Kupyn O, Martyniuk T, Wu J, Wang Z. Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019. p. 8878–87.

Wei J, Wang S, Huang Q. F\(^3\)net: fusion, feedback and focus for salient object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 34. 2020. p. 12321–8.

Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. CoRR, abs/1505.04597. 2015.

Scholz M, Konen W, von Düring M, Hardenack M, Harders AG. Development of an endoscopic navigation system on the base of an automatic visual control system. Clin Neurol Neurosurg. 1997;99:S40.

Article  Google Scholar 

Leonard S, Sinha A, Reiter A, Ishii M, Gallia GL, Taylor RH, Hager GD. Evaluation and stability analysis of video-based navigation system for functional endoscopic sinus surgery on in vivo clinical data. IEEE Trans Med Imaging. 2018;37(10):2185–95.

Article  Google Scholar 

Mur-Artal R, Montiel JMM, Tardos JD. ORB-SLAM: a versatile and accurate monocular slam system. IEEE Trans Rob. 2015;31(5):1147–63.

Article  Google Scholar 

Campos C, Elvira R, Gómez Rodríguez JJ, Montiel JMM, Tardós JD. ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap slam. IEEE Trans Rob. 2021;37(6):1874–90.

Article  Google Scholar 

Qiu L, Ren H. Endoscope navigation and 3D reconstruction of oral cavity by visual slam with mitigated data scarcity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018.

Huo J, Zhou C, Yuan B, Yang Q, Wang L. Real-time dense reconstruction with binocular endoscopy based on stereonet and ORB-SLAM. Sensors. 2023;23(4):2074.

Article  Google Scholar 

Oliva Maza L, Steidle F, Klodmann J, Strobl K, Triebel R. An ORB-SLAM3-based approach for surgical navigation in ureteroscopy. Comput Methods Biomech Biomed Eng Imaging Vis. 2023;11(4):1005–11.

Article  Google Scholar 

Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. p. 3431–40.

Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans Med Imaging. 2019;39(6):1856–67.

Article  Google Scholar 

Cui H, Liu X, Huang N. Pulmonary vessel segmentation based on orthogonal fused u-net++ of chest CT images. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part VI 22. Springer; 2019. p. 293–300.

Google Scholar 

Hao K, Feng G, Ren Y, Zhang X. Iris segmentation using feature channel optimization for noisy environments. Cogn Comput. 2020;12:1205–16.

Article  Google Scholar 

Zhang J, Zhang Y, Jin Y, Xu J, Xu X. MDU-net: multi-scale densely connected u-net for biomedical image segmentation. Health Inf Sci Syst. 2023;11(1):13.

Article  Google Scholar 

Chen B, Liu Y, Zhang Z, Lu G, Kong AWK. Transattunet: multi-level attention-guided u-net with transformer for medical image segmentation. IEEE Trans Emerg Top Comput Intell. 2023.

Oktay O, Schlemper J, Le Folgoc L, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, et al. Attention u-net: Learning where to look for the pancreas. https://arxiv.org/abs/1804.03999 [Preprint]. 2018.

Wang C, Wang Y, Liu Y, He Z, He R, Sun Z. ScleraSegNet: an attention assisted u-net model for accurate sclera segmentation. IEEE Trans Biom Behav Iden Sci. 2019;2(1):40–54.

Article  Google Scholar 

Zhan B, Song E, Liu H. FSA-NET: Rethinking the attention mechanisms in medical image segmentation from releasing global suppressed information. Comput Biol Med. 2023;161:106932.

Article  Google Scholar 

Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wag Y, Lu, L, Yuille AL Zhou Y. TransUNet: transformers make strong encoders for medical image segmentation. arXiv. 2021.  https://arxiv.org/abs/2102.04306.

Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, Wang M. Swin-unet: Unet-like pure transformer for medical image segmentation. In: European Conference on Computer Vision. Springer; 2022. p. 205–18.

Google Scholar 

Krishnan D, Fergus R. Fast image deconvolution using hyper-Laplacian priors. In: Advances in Neural Information Processing Systems. 2008:22.

Levin A, Weiss Y, Durand F, Freeman WT. Understanding and evaluating blind deconvolution algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition. 2009. p. 1964–71.

Krishnan D, Tay T, Fergus R. Blind deconvolution using a normalized sparsity measure. In: IEEE Conference on Computer Vision and Pattern Recognition. 2011. p. 233–40.

Nah S, Hyun Kim T, Mu Lee K. Deep multi-scale convolutional neural network for dynamic scene deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition. 2017.

Kupyn O, Budzan V, Mykhailych M, Mishkin D, Matas J. Deblurgan: blind motion deblurring using conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition. 2018. p. 8183–92.

Kupyn O, Martyniuk T, Wu J, Wang Z. Deblurgan-v2: deblurring (orders-of-magnitude) faster and better. In: International Conference on Computer Vision. 2019. p. 8878–87.

Wang Z, Cun X, Bao J, Zhou W, Liu J, Li H. Uformer: a general u-shaped transformer for image restoration. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2022. p. 17683–93.

Wang X, Chan KCK, Yu K, Dong C, Loy CC. EDVR: video restoration with enhanced deformable convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2019, Long Beach, CA, USA, June 16–20, 2019. Computer Vision Foundation / IEEE; 2019. p. 1954–63.

Lin S, Zhang J, Pan J, Liu Y, Wang Y, Jing C, Jimmy R. Learning to deblur face images via sketch synthesis. In: AAAI Conference on Artificial Intelligence. 2020.

Ren D, Zhang K, Wang Q, Hu Q, Zuo W. Neural blind deconvolution using deep priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2020. p. 3341–50.

Shi L, Funt B, Hamarneh G. Quaternion color curvature. In: Color and Imaging Conference. 2008.

Viswanathan DG. Features from accelerated segment test (fast). In: Proceedings of the 10th Workshop on Image Analysis for Multimedia Interactive Services, London, UK. 2009. p. 6–8.

Alzubaidi L, Bai J, Al-Sabaawi A, Santamaría J, Albahri AS, Al-dabbagh BSN, Fadhel MA, Manoufali M, Zhang J, Al-Timemy AH, et al. A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications. J Big Data. 2023;10(1):46.

Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging. 2004;23(4):501–9.

Article  Google Scholar 

Azzopardi G, Petkov N. Automatic detection of vascular bifurcations in segmented retinal images using trainable COSFIRE filters. Pattern Recogn Lett. 2013;34(8):922–33.

Article  Google Scholar 

Abbasi-Sureshjani S, Smit-Ockeloen I, Bekkers E, Dashtbozorg B, ter Haar Romeny B. Automatic detection of vascular bifurcations and crossings in retinal images using orientation scores. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE; 2016. p. 189–92.

Chapter  Google Scholar 

Uslu F, Bharath AA. A multi-task network to detect junctions in retinal vasculature. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16–20, 2018, Proceedings, Part II 11. Springer; 2018. p. 92–100.

Google Scholar 

Zhao H, Sun Y, Li H. Retinal vascular junction detection and classification via deep neural networks. Computer Methods and Programs in Biomedicine: An International Journal Devoted to the Development, Implementation and Exchange of Computing Methodology and Software Systems in Biomedical Research and Medical Practice. 2020.

留言 (0)

沒有登入
gif